Baby on board--in a BSL4 lab

I'm happy to welcome Dr. Heather Lander to the blogosphere and Twitterverse. She's a virologist who has done work with some of the world's deadliest pathogens in a high-security biosafety level 4 laboratory. This is the type of lab where one must wear "space suits" to work with organisms. You've probably seen in dramatized in various movies and TV shows (such as The Walking Dead). Heather describes what it's really like to work in one--even while pregnant.

Heather 9 months pregnant in BSL4 Dr. Lander, 9 months pregnant in a BSL4 lab


TS: Can you tell readers a bit about your background and research? How did you get interested in studying viruses, especially some of the deadliest on earth that require BSL4 containment?

HL: I began my college career as a music major but I also loved science so I enrolled in many science classes, weighing my options. When I took a molecular cell bio class I was hooked. I changed majors and didn't look any farther ahead than my Bachelor's degree. But then the news exploded with tale of deadly virus outbreaks, and books and movies started coming out. I was fascinated, as are most people, so with permission from the professor I enrolled in a graduate level molecular virology course. Turns out viruses are beyond interesting. They blew my mind: microscopic, consist of hardly anything and can take us down in a matter of days. I wanted to know what was going on. At this point I thought all viruses were insanely interesting, but I found myself drawn to those that cause hemorrhagic fevers (HFV), and not only because of the media attention. I started reading the literature and these viruses were pretty different than the more familiar ones. They were confounding and I wanted to help figure them out.

Because I hadn't planned ahead, I wasn't ready to apply to grad school. So to improve my chances of working with these viruses, I got a job as a technician in a very highly regarded lab that worked on angiogenesis; basically the biology of blood vessels. Because HFVs either damage blood vessels or make them leaky, I thought it would be a good knowledge base. From there I got into the University of Texas Medical Branch as a PhD student and ended up working with CJ Peters, one of the premier experts in HFVs. Our interests aligned and he was great at listening to and encouraging the ideas of a neophyte.

We wanted to investigate viral infection of the cells that line the blood vessels, endothelial cells, and UTMB was getting ready to open their new BSL4 facility - The Robert E. Shope, MD Laboratory - the first of its kind at a U.S. university. In deciding which virus to work with, we took Ebola off the table because it was pretty clear that Ebola caused blood vessel leakiness through overt damage. Other HFVs did not, so the mechanisms of vessel leakiness were still unknown. Of these viruses, the arenaviruses were good options for me. One in particular, Junín virus, which causes Argentine hemorrhagic fever,  was a nice model because we had access to virulent and attenuated strains. I could work with the attenuated BSL2 virus, to get my model and systems up and working, and then repeat the experiments with the virulent BSL4 virus. So I researched the effects of  Junín virus infection on human endothelial cells.

TS: For readers who aren't familiar with what working in a BSL4 entails, can you describe what it's like to work in such a laboratory? 

HL: Working in a BSL4 lab adds a lot of steps to any lab work so everything takes longer. Before you can even go inside you are required to have extensive training, health and psychological assessments and be granted Department of Justice security clearance - many BSL4 organisms are Select Agents. After training at all other levels: BSL2 and 3, you are required to complete 100 hours of mentored, supervised BSL4 training, and assessment by the mentor, before being granted independent access. So, BSL4 research is only done if you can't answer the scientific questions another way. Now, UTMB has the Galveston National Lab, a second BSL4 lab that is much larger, but the Shope lab is relatively small, only a few people can be in there at the same time. This means you have to plan ahead and schedule. Do you have all the supplies you need? You can only carry so much in at one time and you can't go in and out, it's too time consuming. So you have to make sure you know what you'll need and I would often go in a day ahead of time, just to take supplies and make sure I would be ready to go.

During training you do a lot of practice. One of the most important things to practice initially is how to safely hold and open cryovials while wearing bulky rubber gloves. You also learn all safety and decontamination protocols as well as some practical things like moving around the lab safely. Seems silly, but in the lab, you are connected to an air supply through a hose that is attached to the air supply system on the ceiling. Those hoses don't move with you. They stretch only so far and then you have to disconnect, move to where you need to be and connect a hose at that location. The suits are positive pressure with a constant inflow of air, with ports for air exhaust, otherwise they'd pop like a balloon. The air-flow is wonderful. The suits are cool and relatively comfortable, much more so than the stuff you wear for BSL3. Another important thing to learn and practice is how to enter and exit the lab. Seems simple but there are many steps involved. Here's a description of what is is like to enter and exit the UTMB Shope Lab. Other labs are different, so this description isn't meant to apply to all BSL4 labs in general, although the principles would be the same.

One of the best things about working in BSL4 is that, once you're inside no one bothers you, no one interrupts you. There is a phone, but you don't use it unless you have to.  So there are no annoying deliveries, phone calls or bored people stopping by to chat. It's great. Though there was one very important thing I learned early: if you're disconnect from the air hose, don't bend over! When you do, you force the air that's in the suit, out through the exhaust valves, so when you stand back up, the suit is sucked to you like a vacuum sealed bag with no air. Yeah, I did it. They laughed. It only happened once.

TS: Did you or your husband have any reservations about you continuing to work while pregnant? What convinced you that it was safe?

HL: We never had any reservations, and I'll explain why. When I started working in the BSL4, I made sure I explained the work and the risks, to my family and my husband. So when I got pregnant, I had been working in the lab for a couple of years and he was very familiar with what I did. We had many long conversations about it and, as a couple, sat down with CJ and also our environmental health safety officer, the go-to person at UTMB for Select Agent biosafety, and member of the ASBA council. CJ had been head of USAMRIID's containment lab and then he was Chief of Special Pathogens at the CDC. CJ and out EHS officer both know their stuff and were very helpful. I never felt pressured to continue working in the BSL4. It was my decision, with input from my husband of course, but he let me make the call. He trusted me and knew I wouldn't be foolish. Aside from the obvious, the concern with Junín virus is that the case fatality rate is much higher than normal for pregnant women and fetuses, so it was not a cavalier decision by any means.

The bottom line, was that the entire time I worked in the BSL4, I valued my life and I was exacting and followed protocols to the letter. BSL4 protocols are designed to prevent any chance of contamination or infection and if they are followed, then the lab is clean. It's the cleanest lab I've ever been in. I think a big misconception is that there are viruses floating around everywhere in the BSL4 and that's why you wear the suit, but that's just not true. The BSL4 protocols prevent contamination and infection. The suits are back-up - meant more to prevent exposure in the event of an accident than as a first line of defense. If someone in the BSL4 goes into cardiac arrest, we would remove the suit and administer first aid. This of course depends completely on each scientist adhering to protocols, and they do. And they are watched to make sure they do. The director's office has cameras so he can see who is working and what they are doing. Every action is documented. And the people working in there are highly trained. I trusted those people and I trusted myself. I never deviated from the protocols, and I knew that. I was already being as careful and exacting as I could be, so there was no way for me to be more careful because I was pregnant. In addition, I wasn't working with animals at that point, so the risks were lower. I was never worried and neither was my husband.

TS: How did your superiors take it when you first met with them to discuss continuing to do such work while pregnant? Was there anything you had to sell them on to allow you to work in there during your pregnancy?

HL: This was hard. I was terrified that they would make me stop working. No pregnant woman had ever been knowingly allowed to work in a BSL4 lab in the U.S. prior to this. I say "knowingly" because CJ pointed out that it's possible that there were women at the CDC or USAMRIID who went into the BSL4 while pregnant and either didn't know it yet, or they knew but waited as long as they thought they could before telling their supervisor, because they knew they would be told to stop. And here I was, a student at a university.

I broke the news in a committee meeting, my last powerpoint slide was an ultrasound photo. The reactions were mixed, to say the least, but CJ was my advisor so they deferred to him. I didn't have to sell it to CJ, or to our EHS officer. They were very supportive and seemed to welcome the opportunity to advance the rights of pregnant women in biosafety, in a safe way. We discussed the risks and my work and when my husband and I decided to go ahead and push for me to be allowed to keep working, consulting with the Director of the Shope Lab, and the safety experts at USAMRIID and the CDC.

We also involved my physician, who really advocates to prevent unneeded limitations of pregnant women. It took about 3 months for these negotiations, during which time, I did not go into the BSL4. With the help of my doctor we came up with a plan that would allow me to work in the BSL4, with limitations designed specifically to mitigate any difficulties that the pregnancy itself might cause. We drafted a contract and everyone signed it and it went into my UTMB file along with my OBGYN medical records.

Because sometimes unexpected things can happen during pregnancy, some limitations imposed included that I would not be allowed to go into the BSL4 alone. We also decided I would not stay in the lab for more than 3 hours at a time. This was to prevent me from getting both too tired, or dehydrated.  Turns out this one really didn't need to be written down, my bladder was always screaming at me before the three hours were up and that meant exiting the lab. I also couldn't work with animals, which wasn't something I was doing anyway. When all was said and done, USAMRIID, the CDC, my Physician and UTMB were all on board and I went back in. After I paved the way, others have done it. You're welcome. ;)

Heather in BSL4 with first successful Junin Romero plaque assay! Dr. Lander displays her Junin Romero plaque assay.


TS: How was it, logistically, working in there while pregnant? I know I always felt huge and clumsy while pregnant and I wasn't working with anything above BSL2 level and wearing a normal lab coat.

HL: Because the suits are cool, it was still pretty comfortable. It slowed me down for sure, especially the last couple of months. Moving with deliberation was already ingrained in me so that didn't change, but I definitely moved more slowly. And I was huge, and the suit was definitely cumbersome. My belly pushed against the suit near the end but it wasn't painful or even uncomfortable, I just had to give myself enough clearance when moving around tables and things. I also had to ask for help when doing normal everyday housekeeping kinds of things in the lab like emptying a trash bin or lifting autoclave pans. Everyone I worked with was very helpful and kind, so it was not a problem. I had the normal aches and tiredness, but if I ever felt too tired to go in, and there were a few times I did, I would cancel my time for that day and reschedule. I knew my limits and respected them.

TS: Any good stories?

Oh boy do I. Unfortunately I can't share the best ones. When I was still in the 100-hours-of-mentored-training segment of my BSL4 experience, I was in the lab with a professor and we were working with Rift Valley Fever inmice. We had finished the work and had already put the animals away and cleaned up. We were just getting ready to exit the animal room, to go into the main section of the lab, and the air hose connection valve on my suit broke. Without the air hose, there's no air, not to mention the suit had a hole in it. The professor realized what happened before I did and grabbed the air hose and shoved it against the broken valve, allowing air to get inside the suit. He and I took turns holding air hoses in place while we showered and exited. Because of the incident we had to fill out paperwork and I had to go to the university hospital's BSL4 exposure unit for a potential exposure. Because we hadn't been working with anything when the valve broke, I wasn't actually exposed to anything, but it was standard protocol. I was released fairly quickly and have a story to tell. The experience taught me a lot about how to handle those situations and even though those kinds of things are REALLY rare, the BSL4 director made changes to specifically prevent anything like that from ever happening again, and it hasn't happened since.

TS:  What are you working on now and what are your longer-term career goals?

HL: I want to put my expertise to good use and I've come to realize that I love writing so I'm hoping to find something that can incorporate that. In the meantime, I have a really interesting job doing grant development for faculty at UTMB. This involves high-level assessment of the science, grantsmanship and presentation/writing of proposals, in an effort to help make faculty more competitive. To get my pathogen fix and dispel some emerging disease misconceptions, I recently started the blog and I'm really enjoying it. I also have ideas for a novel (don't we all?), so...who knows?

Many thanks to Heather for participating! Be sure to check her out at Pathogen Perspectives or Twitter


More like this

The first person to enter the lab in the morning, has to complete a check of all equipment that makes the lab operational. There is a checklist and you go through all floors of the facility and document the status of every piece of equipment and levels on every pressure gauge. Then you do a visual…
George Mason University in Virginia is a good school. Slightly on the conservative side, politically, but with astute thinkers in economics, political science and many other fields, including molecular biology. It also has a National Center for Biodefense and Infectious Diseases. It has just…
Oh, good. We're going to have more high containment (BSL4) laboratories to handle the world's most dangerous organisms, the ones for which there is no cure and usually no vaccine. Also bioweapons agents like anthrax and smallpox. Lovely. Where? We don't know yet. The list of candidates was narrowed…
We've argued before that the US biodefense laboratory effort -- whose planning principle seems to be based on "more" -- was making us less safe, not more safe. Whatever else you say about the anthrax attacks, they are a perfect illustration of this. The weapon and the culprit(s) came directly from…