On Fridays I look at the new stuff published on PLoS community journals, i.e., PLoS Pathogens, Neglected Tropical Diseases, Genetics and Computational Biology. Here are my picks for this week:
The Per2 Negative Feedback Loop Sets the Period in the Mammalian Circadian Clock Mechanism:
Network models of biological systems are appearing at an increasing rate. By encapsulating mechanistic detail of chemical and physical processes, mathematical models can successfully simulate and predict emergent network properties. However, methods are needed for analyzing the role played by individual biochemical steps in producing context-dependent system behavior, thereby linking individual molecular knowledge with network properties. Here, we apply sensitivity analysis to analyze mammalian circadian rhythms and find that a contiguous series of reactions in one of the four negative feedback loops carries primary responsibility for determining the intrinsic length of day. The key reactions, all involving the gene per2 and its products, include Per2 mRNA export and degradation, and PER2 phosphorylation, transcription, and translation. Interestingly, mutations affecting PER2 phosphorylation have previously been linked to circadian disorders. The method may be generally applicable to probe structure-function relationships in biological networks.
Sustained Post-Mating Response in Drosophila melanogaster Requires Multiple Seminal Fluid Proteins:
In sexually reproducing organisms, sperm enter the female in combination with seminal proteins that are critical for fertility. These proteins can activate sperm or enhance sperm storage within the female, and can improve the chance that sperm will fertilize eggs. Understanding the action of seminal proteins has potential utility in insect pest control and in the diagnosis of certain human infertilities. However, the precise function of very few seminal proteins is known. To address this, we knocked down the levels of 25 seminal proteins individually in male fruit flies, and tested the males' abilities to modulate egg production, sperm storage/release, or behavior of their mates. We found five seminal proteins that are necessary to elevate offspring production in mated females. Four of these proteins are needed for efficient release of sperm from storage to fertilize eggs, a function that had not been previously assigned to any seminal protein. All four are in biochemical classes that are conserved in seminal fluid from insects to humans, suggesting they may play similar sperm-related roles in other animals. In addition to assigning functions to particular seminal proteins, our results suggest that fruit flies can serve as a model with which to dissect the functions of conserved protein classes in seminal fluid.
Bacteria are sometimes honored with a few lines in books and reviews on aging as an example of organisms that do not age. This is because binary fission of bacteria has been assumed to proceed with a nonconservative dispersion of both undamaged and damaged constituents, such that there are no adult forms of bacterial cells and the bacterial population is not age structured. However, some authors have expressed different views; for example, Partridge and Barton [1] consider asymmetry in simple unicellular systems and how this might develop into aging, and Tom Kirkwood [2] argues, on theoretical grounds, that damage segregation could be selected for in simple unicellular systems dividing by binary fission, and that sibling-specific deterioration may confer a selective advantage. Indeed, recent reports lend experimental support to this notion and point to mandatory aging also being a part of the life history of bacteria.
- Log in to post comments