New and Exciting in PLoS ONE

There are 48 new articles published this week in PLoS ONE. It's hard to choose just a couple to highlight, so look around for what interests you (avian flu, the Plague?). How about these titles that piqued my interest:

Neural Substrates of Spontaneous Musical Performance: An fMRI Study of Jazz Improvisation:

To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences) was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar) cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance) as well as deactivation of limbic structures (that regulate motivation and emotional tone). This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

A Specific and Rapid Neural Signature for Parental Instinct:

Darwin originally pointed out that there is something about infants which prompts adults to respond to and care for them, in order to increase individual fitness, i.e. reproductive success, via increased survivorship of one's own offspring. Lorenz proposed that it is the specific structure of the infant face that serves to elicit these parental responses, but the biological basis for this remains elusive. Here, we investigated whether adults show specific brain responses to unfamiliar infant faces compared to adult faces, where the infant and adult faces had been carefully matched across the two groups for emotional valence and arousal, as well as size and luminosity. The faces also matched closely in terms of attractiveness. Using magnetoencephalography (MEG) in adults, we found that highly specific brain activity occurred within a seventh of a second in response to unfamiliar infant faces but not to adult faces. This activity occurred in the medial orbitofrontal cortex (mOFC), an area implicated in reward behaviour, suggesting for the first time a neural basis for this vital evolutionary process. We found a peak in activity first in mOFC and then in the right fusiform face area (FFA). In mOFC the first significant peak (p

Time Pressure Modulates Electrophysiological Correlates of Early Visual Processing:

Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy-usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms. We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements. Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing.

Generalization Mediates Sensitivity to Complex Odor Features in the Honeybee:

Animals use odors as signals for mate, kin, and food recognition, a strategy which appears ubiquitous and successful despite the high intrinsic variability of naturally-occurring odor quantities. Stimulus generalization, or the ability to decide that two objects, though readily distinguishable, are similar enough to afford the same consequence [1], could help animals adjust to variation in odor signals without losing sensitivity to key inter-stimulus differences. The present study was designed to investigate whether an animal's ability to generalize learned associations to novel odors can be influenced by the nature of the associated outcome. We use a classical conditioning paradigm for studying olfactory learning in honeybees [2] to show that honeybees conditioned on either a fixed- or variable-proportion binary odor mixture generalize learned responses to novel proportions of the same mixture even when inter-odor differences are substantial. We also show that the resulting olfactory generalization gradients depend critically on both the nature of the stimulus-reward paradigm and the intrinsic variability of the conditioned stimulus. The reward dependency we observe must be cognitive rather than perceptual in nature, and we argue that outcome-dependent generalization is necessary for maintaining sensitivity to inter-odor differences in complex olfactory scenes.

Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium:

Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These "memory" effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to 'remember' 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy.

Crayfish Recognize the Faces of Fight Opponents:

The capacity to associate stimuli underlies many cognitive abilities, including recognition, in humans and other animals. Vertebrates process different categories of information separately and then reassemble the distilled information for unique identification, storage and recall. Invertebrates have fewer neural networks and fewer neural processing options so study of their behavior may reveal underlying mechanisms still not fully understood for any animal. Some invertebrates form complex social colonies and are capable of visual memory-bees and wasps, for example. This ability would not be predicted in species that interact in random pairs without strong social cohesion; for example, crayfish. They have chemical memory but the extent to which they remember visual features is unknown. Here we demonstrate that the crayfish Cherax destructor is capable of visual recognition of individuals. The simplicity of their interactions allowed us to examine the behavior and some characteristics of the visual features involved. We showed that facial features are learned during face-to-face fights, that highly variable cues are used, that the type of variability is important, and that the learning is context-dependent. We also tested whether it is possible to engineer false identifications and for animals to distinguish between twin opponents.

The Blind Watchmaker Network: Scale-Freeness and Evolution:

It is suggested that the degree distribution for networks of the cell-metabolism for simple organisms reflects a ubiquitous randomness. This implies that natural selection has exerted no or very little pressure on the network degree distribution during evolution. The corresponding random network, here termed the blind watchmaker network has a power-law degree distribution with an exponent γâ¥2. It is random with respect to a complete set of network states characterized by a description of which links are attached to a node as well as a time-ordering of these links. No a priory assumption of any growth mechanism or evolution process is made. It is found that the degree distribution of the blind watchmaker network agrees very precisely with that of the metabolic networks. This implies that the evolutionary pathway of the cell-metabolism, when projected onto a metabolic network representation, has remained statistically random with respect to a complete set of network states. This suggests that even a biological system, which due to natural selection has developed an enormous specificity like the cellular metabolism, nevertheless can, at the same time, display well defined characteristics emanating from the ubiquitous inherent random element of Darwinian evolution. The fact that also completely random networks may have scale-free node distributions gives a new perspective on the origin of scale-free networks in general.

Quantifying Variability of Avian Colours: Are Signalling Traits More Variable?:

Increased variability in sexually selected ornaments, a key assumption of evolutionary theory, is thought to be maintained through condition-dependence. Condition-dependent handicap models of sexual selection predict that (a) sexually selected traits show amplified variability compared to equivalent non-sexually selected traits, and since males are usually the sexually selected sex, that (b) males are more variable than females, and (c) sexually dimorphic traits more variable than monomorphic ones. So far these predictions have only been tested for metric traits. Surprisingly, they have not been examined for bright coloration, one of the most prominent sexual traits. This omission stems from computational difficulties: different types of colours are quantified on different scales precluding the use of coefficients of variation. Based on physiological models of avian colour vision we develop an index to quantify the degree of discriminable colour variation as it can be perceived by conspecifics. A comparison of variability in ornamental and non-ornamental colours in six bird species confirmed (a) that those coloured patches that are sexually selected or act as indicators of quality show increased chromatic variability. However, we found no support for (b) that males generally show higher levels of variability than females, or (c) that sexual dichromatism per se is associated with increased variability. We show that it is currently possible to realistically estimate variability of animal colours as perceived by them, something difficult to achieve with other traits. Increased variability of known sexually-selected/quality-indicating colours in the studied species, provides support to the predictions borne from sexual selection theory but the lack of increased overall variability in males or dimorphic colours in general indicates that sexual differences might not always be shaped by similar selective forces.

Frequency and Density-Dependent Selection on Life-History Strategies - A Field Experiment:

Negative frequency-dependence, which favors rare genotypes, promotes the maintenance of genetic variability and is of interest as a potential explanation for genetic differentiation. Density-dependent selection may also promote cyclic changes in frequencies of genotypes. Here we show evidence for both density-dependent and negative frequency-dependent selection on opposite life-history tactics (low or high reproductive effort, RE) in the bank vole (Myodes glareolus). Density-dependent selection was evident among the females with low RE, which were especially favored in low densities. Instead, both negative frequency-dependent and density-dependent selection were shown in females with high RE, which were most successful when they were rare in high densities. Furthermore, selection at the individual level affected the frequencies of tactics at the population level, so that the frequency of the rare high RE tactic increased significantly at high densities. We hypothesize that these two selection mechanisms (density- and negative frequency-dependent selection) may promote genetic variability in cyclic mammal populations. Nevertheless, it remains to be determined whether the origin of genetic variance in life-history traits is causally related to density variation (e.g. population cycles).

Effectiveness of Journal Ranking Schemes as a Tool for Locating Information:

The rise of electronic publishing [1], preprint archives, blogs, and wikis is raising concerns among publishers, editors, and scientists about the present day relevance of academic journals and traditional peer review [2]. These concerns are especially fuelled by the ability of search engines to automatically identify and sort information [1]. It appears that academic journals can only remain relevant if acceptance of research for publication within a journal allows readers to infer immediate, reliable information on the value of that research. Here, we systematically evaluate the effectiveness of journals, through the work of editors and reviewers, at evaluating unpublished research. We find that the distribution of the number of citations to a paper published in a given journal in a specific year converges to a steady state after a journal-specific transient time, and demonstrate that in the steady state the logarithm of the number of citations has a journal-specific typical value. We then develop a model for the asymptotic number of citations accrued by papers published in a journal that closely matches the data. Our model enables us to quantify both the typical impact and the range of impacts of papers published in a journal. Finally, we propose a journal-ranking scheme that maximizes the efficiency of locating high impact research.

Post comments, notes and ratings, blog about them and send trackbacks.

Categories

More like this