New and Exciting in PLoS ONE

There are 45 new articles in PLoS ONE this week. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own favourites, including the first one which tests one of Darwin's own hypotheses:

Resource Competition Triggers the Co-Evolution of Long Tongues and Deep Corolla Tubes:

It is normally thought that deep corolla tubes evolve when a plant's successful reproduction is contingent on having a corolla tube longer than the tongue of the flower's pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers. We have extended the model to study whether resource competition can trigger the co-evolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues. Co-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experience competition for resources and that plants experience pollination limitation.

Owls May Use Faeces and Prey Feathers to Signal Current Reproduction:

Many animals communicate by marking focal elements of their home range with different kinds of materials. Visual signaling has been demonstrated to play a previously unrecognized role in the intraspecific communication of eagle owls (Bubo bubo), in both territorial and parent-offspring contexts. Visual signals may play a role in a variety of circumstances in this crepuscular and nocturnal species. Here, we report that a large amount of extremely visible white faeces and prey feathers appear during the breeding season on posts and plucking sites in proximity to the nest, potentially representing a way for eagle owls to mark their territory. We present descriptive and experimental evidence showing that faeces and prey remains could act as previously unrecognized visual signals in a nocturnal avian predator. This novel signaling behavior could indicate the owls' current reproductive status to potential intruders, such as other territorial owls or non-breeding floaters. Faeces and prey feather markings may also advertise an owl's reproductive status or function in mate-mate communication. We speculate that faeces marks and plucking may represent an overlooked but widespread method for communicating current reproduction to conspecifics. Such marking behavior may be common in birds, and we may now be exploring other questions and mechanisms in territoriality.

Phase Shift from a Coral to a Corallimorph-Dominated Reef Associated with a Shipwreck on Palmyra Atoll:

Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra) in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral reef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.

Adaptive Melanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stress at "Evolution Canyon", Mount Carmel, Israel:

Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s) that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC) in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS) receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES), 200 meters apart. Thus, solar ultraviolet radiation (UVR) is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin; in contrast, the sunny strains from the ES displayed higher melanin concentrations. We conclude that melanin in A. niger is an adaptive trait against UVR generated by natural selection.

The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages:

MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5â² and/or 3â² ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms.

Matched Filters, Mate Choice and the Evolution of Sexually Selected Traits:

Fundamental for understanding the evolution of communication systems is both the variation in a signal and how this affects the behavior of receivers, as well as variation in preference functions of receivers, and how this affects the variability of the signal. However, individual differences in female preference functions and their proximate causation have rarely been studied. Calling songs of male field crickets represent secondary sexual characters and are subject to sexual selection by female choice. Following predictions from the "matched filter hypothesis" we studied the tuning of an identified interneuron in a field cricket, known for its function in phonotaxis, and correlated this with the preference of the same females in two-choice trials. Females vary in their neuronal frequency tuning, which strongly predicts the preference in a choice situation between two songs differing in carrier frequency. A second "matched filter" exists in directional hearing, where reliable cues for sound localization occur only in a narrow frequency range. There is a strong correlation between the directional tuning and the behavioural preference in no-choice tests. This second "matched filter" also varies widely in females, and surprisingly, differs on average by 400 Hz from the neuronal frequency tuning. Our findings on the mismatch of the two "matched filters" would suggest that the difference in these two filters appears to be caused by their evolutionary history, and the different trade-offs which exist between sound emission, transmission and detection, as well as directional hearing under specific ecological settings. The mismatched filter situation may ultimately explain the maintenance of considerable variation in the carrier frequency of the male signal despite stabilizing selection.

Evidence of the Importance of Host Habitat Use in Predicting the Dilution Effect of Wild Boar for Deer Exposure to Anaplasma spp:

Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape.

In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER) of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR), a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules), the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER.

The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER) in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host habitat usage may weaken the predicted dilution effect for tick-borne pathogens and emphasize the importance of the perceptual capabilities of different hosts in different landscapes and habitat fragmentation conditions for predictions of dilution effects.

Stochastic and Regulatory Role of Chromatin Silencing in Genomic Response to Environmental Changes:

Phenotypic diversity and fidelity can be balanced by controlling stochastic molecular mechanisms. Epigenetic silencing is one that has a critical role in stress response. Here we show that in yeast, incomplete silencing increases stochastic noise in gene expression, probably owing to unstable chromatin structure. Telomere position effect is suggested as one mechanism. Expression diversity in a population achieved in this way may render a subset of cells to readily respond to various acute stresses. By contrast, strong silencing tends to suppress noisy expression of genes, in particular those involved in life cycle control. In this regime, chromatin may act as a noise filter for precisely regulated responses to environmental signals that induce huge phenotypic changes such as a cell fate transition. These results propose modulation of chromatin stability as an important determinant of environmental adaptation and cellular differentiation.

Culture Shapes How We Look at Faces:

Face processing, amongst many basic visual skills, is thought to be invariant across all humans. From as early as 1965, studies of eye movements have consistently revealed a systematic triangular sequence of fixations over the eyes and the mouth, suggesting that faces elicit a universal, biologically-determined information extraction pattern. Here we monitored the eye movements of Western Caucasian and East Asian observers while they learned, recognized, and categorized by race Western Caucasian and East Asian faces. Western Caucasian observers reproduced a scattered triangular pattern of fixations for faces of both races and across tasks. Contrary to intuition, East Asian observers focused more on the central region of the face. These results demonstrate that face processing can no longer be considered as arising from a universal series of perceptual events. The strategy employed to extract visual information from faces differs across cultures.

Habitat-Specific Population Growth of a Farmland Bird:

To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated. We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use) types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands) displayed negative stochastic population growth rates (log λs: â0.332, â0.429, â0.168, respectively), that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log λs: â0.056, +0.081, â0.059). Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE). Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.

Gene Expression Disruptions of Organism versus Organ in Drosophila Species Hybrids:

Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes.

Categories

More like this