New and Exciting in PLoS this week

Now that PLoS ONE is publishing daily (OK, not really, only on work-days, i.e., 5 times a week), I have been pointing to my picks every day. Let's look at what has been published there last night and tonight as well as what's new in other PLoS journals. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers.

Courtship Initiation Is Stimulated by Acoustic Signals in Drosophila melanogaster:

Finding a mating partner is a critical task for many organisms. It is in the interest of males to employ multiple sensory modalities to search for females. In Drosophila melanogaster, vision is thought to be the most important courtship stimulating cue at long distance, while chemosensory cues are used at relatively short distance. In this report, we show that when visual cues are not available, sounds produced by the female allow the male to detect her presence in a large arena. When the target female was artificially immobilized, the male spent a prolonged time searching before starting courtship. This delay in courtship initiation was completely rescued by playing either white noise or recorded fly movement sounds to the male, indicating that the acoustic and/or seismic stimulus produced by movement stimulates courtship initiation, most likely by increasing the general arousal state of the male. Mutant males expressing tetanus toxin (TNT) under the control of Gr68a-GAL4 had a defect in finding active females and a delay in courtship initiation in a large arena, but not in a small arena. Gr68a-GAL4 was found to be expressed pleiotropically not only in putative gustatory pheromone receptor neurons but also in mechanosensory neurons, suggesting that Gr68a-positive mechanosensory neurons, not gustatory neurons, provide motion detection necessary for courtship initiation. TNT/Gr68a males were capable of discriminating the copulation status and age of target females in courtship conditioning, indicating that female discrimination and formation of olfactory courtship memory are independent of the Gr68a-expressing neurons that subserve gustation and mechanosensation. This study suggests for the first time that mechanical signals generated by a female fly have a prominent effect on males' courtship in the dark and leads the way to studying how multimodal sensory information and arousal are integrated in behavioral decision making.

Hyaluronidase of Bloodsucking Insects and Its Enhancing Effect on Leishmania Infection in Mice:

Hyaluronidases are enzymes degrading the extracellular matrix of vertebrates. Bloodsucking insects use them to cleave the skin of the host, enlarge the feeding lesion and acquire the blood meal. In addition, resulting fragments of extracellular matrix modulate local immune response of the host, which may positively affect transmission of vector-borne diseases, including leishmaniasis. Leishmaniases are diseases with a wide spectrum of clinical forms, from a relatively mild cutaneous affection to life-threatening visceral disease. Their causative agents, protozoans of the genus Leishmania, are transmitted by phlebotomine sand flies. Sand fly saliva was described to enhance Leishmania infection, but the information about molecules responsible for this exacerbating effect is still very limited. In the present work we demonstrated hyaluronidase activity in salivary glands of various Diptera and in fleas. In addition, we showed that hyaluronidase exacerbates Leishmania lesions in mice and propose that salivary hyaluronidase may facilitate the spread of other vector-borne microorganisms.

A Publish-Subscribe Model of Genetic Networks:

We present a simple model of genetic regulatory networks in which regulatory connections among genes are mediated by a limited number of signaling molecules. Each gene in our model produces (publishes) a single gene product, which regulates the expression of other genes by binding to regulatory regions that correspond (subscribe) to that product. We explore the consequences of this publish-subscribe model of regulation for the properties of single networks and for the evolution of populations of networks. Degree distributions of randomly constructed networks, particularly multimodal in-degree distributions, which depend on the length of the regulatory sequences and the number of possible gene products, differed from simpler Boolean NK models. In simulated evolution of populations of networks, single mutations in regulatory or coding regions resulted in multiple changes in regulatory connections among genes, or alternatively in neutral change that had no effect on phenotype. This resulted in remarkable evolvability in both number and length of attractors, leading to evolved networks far beyond the expectation of these measures based on random distributions. Surprisingly, this rapid evolution was not accompanied by changes in degree distribution; degree distribution in the evolved networks was not substantially different from that of randomly generated networks. The publish-subscribe model also allows exogenous gene products to create an environment, which may be noisy or stable, in which dynamic behavior occurs. In simulations, networks were able to evolve moderate levels of both mutational and environmental robustness.

[11C]CHIBA-1001 as a Novel PET Ligand for α7 Nicotinic Receptors in the Brain: A PET Study in Conscious Monkeys:

The α7 nicotinic acetylcholine receptors (nAChRs) play an important role in the pathophysiology of neuropsychiatric diseases such as schizophrenia and Alzheimer's disease. However, there are currently no suitable positron emission tomography (PET) radioligands for imaging α7 nAChRs in the intact human brain. Here we report the novel PET radioligand [11C]CHIBA-1001 for in vivo imaging of α7 nAChRs in the non-human primate brain. A receptor binding assay showed that CHIBA-1001 was a highly selective ligand at α7 nAChRs. Using conscious monkeys, we found that the distribution of radioactivity in the monkey brain after intravenous administration of [11C]CHIBA-1001 was consistent with the regional distribution of α7 nAChRs in the monkey brain. The distribution of radioactivity in the brain regions after intravenous administration of [11C]CHIBA-1001 was blocked by pretreatment with the selective α7 nAChR agonist SSR180711 (5.0 mg/kg). However, the distribution of [11C]CHIBA-1001 was not altered by pretreatment with the selective α4β2 nAChR agonist A85380 (1.0 mg/kg). Interestingly, the binding of [11C]CHIBA-1001 in the frontal cortex of the monkey brain was significantly decreased by subchronic administration of the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (0.3 mg/kg, twice a day for 13 days); which is a non-human primate model of schizophrenia. The present findings suggest that [11C]CHIBA-1001 could be a novel useful PET ligand for in vivo study of the receptor occupancy and pathophysiology of α7 nAChRs in the intact brain of patients with neuropsychiatric diseases such as schizophrenia and Alzheimer's disease.

Toward Comprehensive Interventions to Improve the Health of Women of Reproductive Age:

In lesser-developed countries (LDCs), the causes of anaemia during pregnancy are multi-factorial, yet much of the aetiological fraction of disease is attributable to a few entities. Iron deficiency is the most common cause of anaemia among pregnant women, resulting from both dietary insufficiency of iron as well as losses through the gastrointestinal tract. These losses are largely due to hookworm infection, but schistosomiasis at higher intensities of infection may also lead to blood loss [1].

The argument for hookworm treatment during pregnancy as proposed by Brooker et al. [2] and the WHO [3] is based largely on expected consequences of hookworm-related iron deficiency anaemia for both mother and newborn. It is beyond the scope of this commentary to address the complex relationship between hemoglobin levels assessed at different stages of pregnancy and peri-natal morbidity [4]. However, the relationship between iron status early in pregnancy and birth outcomes is clearer and more relevant here. It is fairly well established that iron deficiency anaemia present during the first trimester of pregnancy is associated with a 2-fold risk of low birth weight [5]. This risk is much lower among women with non-iron deficiency anaemia during the first trimester, arguing for an important mechanistic role for iron per se, discussed in greater detail in recent reviews [6]. In addition to its effects on birth weight, transfer of iron to the developing fetus is compromised among women with depleted iron stores [7]. Maternal iron deficiency is related to decreased newborn and infant iron stores, as well as increased risk of anaemia during infancy [4]. Given the established relationship between hookworm and iron deficiency, hookworm treatment is likely to positively affect maternal and infant health, though the timing of treatment as well as provision of micro-nutrient supplementation are key factors discussed further below.

Categories

More like this