So, let's see what's new in PLoS Genetics, PLoS Computational Biology and PLoS Pathogens this week. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own favourites:
I Am Not a Scientist, I Am a Number:
Imagine a time when you and your complete scholarly output--papers, grant applications, blog posts, etc.--could be identified online and in perpetuity and returned in a variety of easy-to-digest ways. While ego comes into it as a driver to make this happen, measuring scientific career advancement is something that lacks good metrics in a digital world. Unless one has a truly unique name, applying such a metric is not possible now. Even with a unique name, what is the guarantee that all of our scholarly output will be captured by one source of that information? In the end, we as individuals are the only ones who reliably track our scholarly output. This situation is beginning to change, and, as we shall see, new metrics have the promise of much more than simply returning references to our collective life's work as currently described by research papers, research proceedings, books, and book chapters. Although even a complete and current resume generated on demand would be a big step, if it could be returned in a variety of formats for a variety of purposes. These complete resumes are something many of us spend endless hours generating.
and more:
Because nervous systems generate behavior, innovations that confer new neuronal signaling functions are important potential factors in evolution. In mammals, clustering of ion channels on nerves is essential for electrical impulses used in rapid signaling. This channel clustering is generally absent in insects, worms, and other non-chordates. We traced the evolutionary emergence of mechanisms underlying channel clustering on nerves by analyzing the genomes of primitive chordates and studying the cellular distribution and functional properties of their channels. We found that sodium channel clustering evolved early in the chordate lineage, before the divergence of the earliest wormlike and planktonic groups (lancelets and sea squirts). Nerve fibers of the lamprey, a primitive fish, retained some invertebrate features but possessed dense sodium channel clusters like in more recently evolved vertebrates. A potassium channel clustering system evolved, after the divergence of lampreys, in a common ancestor of shark and humans. We conclude that the clustering of sodium channels on axons was the initial pivotal step in a chordate-specific series of evolutionary innovations, making nerve impulses more rapid and robust. The refinements in action potentials we have elucidated appear essential for the complex neural signaling and active behavior of vertebrates.
The ability to work out what other people are thinking is essential for effective social interactions, be they cooperative or competitive. A widely used example is cooperative hunting: large prey is difficult to catch alone, but we can circumvent this by cooperating with others. However, hunting can pit private goals to catch smaller prey that can be caught alone against mutually beneficial goals that require cooperation. Understanding how we work out optimal strategies that balance cooperation and competition has remained a central puzzle in game theory. Exploiting insights from computer science and behavioural economics, we suggest a model of 'theory of mind' using 'recursive sophistication' in which my model of your goals includes a model of your model of my goals, and so on ad infinitum. By studying experimental data in which people played a computer-based group hunting game, we show that the model offers a good account of individual decisions in this context, suggesting that such a formal 'theory of mind' model can cast light on how people build internal representations of other people in social interactions.
The Morphological Identity of Insect Dendrites:
Neural computation has been shown to be heavily dependent not only on the connectivity of single neurons but also on their specific dendritic shape--often used as a key feature for their classification. Still, very little is known about the constraints determining a neuron's morphological identity. In particular, one would like to understand what cells with the same or similar function share anatomically, what renders them different from others, and whether one can formalize this difference objectively. A large number of approaches have been proposed, trying to put dendritic morphology in a parametric frame. A central problem lies in the wide variety and variability of dendritic branching and function even within one narrow cell class. We addressed this problem by investigating functionally and anatomically highly conserved neurons in the fly brain, where each neuron can easily be individually identified in different animals. Our analysis shows that the pattern of dendritic branching is not unique in any particular cell, only the features of the area that the dendrites cover allow a clear classification. This leads to the conclusion that all fly dendrites share the same growth program but a neuron's dendritic field shape, its "anatomical receptive field", is key to its specific identity.
Identification of Mechanosensitive Genes during Embryonic Bone Formation:
While mechanical forces are known to be critical to adult bone maintenance and repair, the importance of mechanobiology in embryonic bone formation is less widely accepted. The influence of mechanical forces on cells is thought to be mediated by "mechanosensitive genes," genes which respond to mechanical stimulation. In this research, we examined the situation in the developing embryo. Using finite element analysis, we simulated the biophysical stimuli in the developing bone resulting from spontaneous muscle contractions, incorporating detailed morphology of the developing chick limb. We compared patterns of stimuli with expression patterns of a number of genes involved in bone formation and demonstrated a clear colocalisation in the case of two genes (Ihh and ColX). We then altered the mechanical environment of the growing chick embryo by blocking muscle contractions and demonstrated changes in the magnitudes and patterns of biophysical stimuli and in the expression patterns of both Ihh and ColX. We have demonstrated the value of combining computational techniques with in vivo gene expression analysis to identify genes that may play a mechanoregulatory role and have identified genes that respond to mechanical stimulation during bone formation in vivo.
- Log in to post comments