New and Exciting in PLoS ONE

There are 16 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Climate Change and Trophic Response of the Antarctic Bottom Fauna:

As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop ~41 Ma (million years ago), eliminated durophagous predators--teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)--from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, ~33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes.

Risks for Central Nervous System Diseases among Mobile Phone Subscribers: A Danish Retrospective Cohort Study:

The aim of this study was to investigate a possible link between cellular telephone use and risks for various diseases of the central nervous system (CNS). We conducted a large nationwide cohort study of 420 095 persons whose first cellular telephone subscription was between 1982 and 1995, who were followed through 2003 for hospital contacts for a diagnosis of a CNS disorder. Standardized hospitalization ratios (SHRs) were derived by dividing the number of hospital contacts in the cohort by the number expected in the Danish population. The SHRs were increased by 10-20% for migraine and vertigo. No associations were seen for amyotrophic lateral sclerosis, multiple sclerosis or epilepsy in women. SHRs decreased by 30-40% were observed for dementia (Alzheimer disease, vascular and other dementia), Parkinson disease and epilepsy among men. In analyses restricted to subscribers of 10 years or more, the SHRs remained similarly increased for migraine and vertigo and similarly decreased for Alzheimer disease and other dementia and epilepsy (in men); the other SHRs were close to unity. In conclusion, the excesses of migraine and vertigo observed in this first study on cellular telephones and CNS disease deserve further attention. An interplay of a healthy cohort effect and reversed causation bias due to prodromal symptoms impedes detection of a possible association with dementia and Parkinson disease. Identification of the factors that result in a healthy cohort might be of interest for elucidation of the etiology of these diseases.

A Ligand Channel through the G Protein Coupled Receptor Opsin:

The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM) structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7), and B (between TM5 and 6), respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 à and is between 11.6 and 3.2 à wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal β-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90° elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all-trans-retinal through B.

Phylogenetic Resolution and Quantifying the Phylogenetic Diversity and Dispersion of Communities:

Conservation biologists and community ecologists have increasingly begun to quantify the phylogenetic diversity and phylogenetic dispersion in species assemblages. In some instances, the phylogenetic trees used for such analyses are fully bifurcating, but in many cases the phylogenies being used contain unresolved nodes (i.e. polytomies). The lack of phylogenetic resolution in such studies, while certainly not preferred, is likely to continue particularly for those analyzing diverse communities and datasets with hundreds to thousands of taxa. Thus it is imperative that we quantify potential biases and losses of statistical power in studies that use phylogenetic trees that are not completely resolved. The present study is designed to meet both of these goals by quantifying the phylogenetic diversity and dispersion of simulated communities using resolved and gradually 'unresolved' phylogenies. The results show that: (i) measures of community phylogenetic diversity and dispersion are generally more sensitive to loss of resolution basally in the phylogeny and less sensitive to loss of resolution terminally; and (ii) the loss of phylogenetic resolution generally causes false negative results rather than false positives.

Probing Evolutionary Patterns in Neotropical Birds through DNA Barcodes:

The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds. Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms. These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes.

Ticks Associated with Macquarie Island Penguins Carry Arboviruses from Four Genera:

Macquarie Island, a small subantarctic island, is home to rockhopper, royal and king penguins, which are often infested with the globally distributed seabird tick, Ixodes uriae. A flavivirus, an orbivirus, a phlebovirus, and a nairovirus were isolated from these ticks and partial sequences obtained. The flavivirus was nearly identical to Gadgets Gully virus, isolated some 30 year previously, illustrating the remarkable genetic stability of this virus. The nearest relative to the orbivirus (for which we propose the name Sandy Bay virus) was the Scottish Broadhaven virus, and provided only the second available sequences from the Great Island orbivirus serogroup. The phlebovirus (for which we propose the name Catch-me-cave virus) and the previously isolated Precarious Point virus were distinct but related, with both showing homology with the Finnish Uukuniemi virus. These penguin viruses provided the second and third available sequences for the Uukuniemi group of phleboviruses. The nairovirus (for which we propose the name Finch Creek virus) was shown to be related to the North American Tillamook virus, the Asian Hazara virus and Nairobi sheep disease virus. Macquarie Island penguins thus harbour arboviruses from at least four of the seven arbovirus-containing genera, with related viruses often found in the northern hemisphere.

Evolution of Genome Size and Complexity in Pinus:

Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.

More like this

Ian Musgrave has just posted an excellent article on the poor design of the vertebrate eye compared to the cephalopod eye; it's very thorough, and explains how the clumsy organization of the eye clearly indicates that it is the product of an evolutionary process rather than of any kind of…
Part IV. Assembling the details and making the case for a novel paramyxovirus This is the fourth in a five part series on an unexpected discovery of a paramyxovirus in a mosquito. In this part, we take a look at all the evidence we can find and try to figure out how a gene from a virus came to be…
There have been 19 new articles Monday night and 11 new articles Tuesday night in PLoS ONE. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley,…
What do this cartoon and the latest edition of PLoS One have in common? Well, reading Bora's blog this week I saw an article entitled, Risks for Central Nervous System Diseases among Mobile Phone Subscribers: A Danish Retrospective Cohort Study and my ears perked up. We have been mocking the…