New and Exciting in PLoS this week

So, let's see what's new in PLoS Genetics, PLoS Computational Biology, PLoS Pathogens and PLoS ONE this week. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own favourites:

Harmonics of Circadian Gene Transcription in Mammals:

Circadian rhythms confer adaptive advantages by allowing organisms to anticipate daily changes in their environment. Over the last few years, many groups have used microarray technology to systematically identify genes under circadian regulation. We have extended on these studies by profiling the circadian transcriptome from the mouse liver and two immortalized cell lines at an unprecedentedly high temporal resolution. We identified over 3,000 different transcripts in the mouse liver that cycle with a period length of approximately 24 hours. To our surprise, we also identified two classes of genes which cycle with period lengths of 12 and 8 hours; i.e., harmonics of the circadian clock. Importantly, we were able to identify harmonics in five other tissue types; however, these rhythms were undetectable in disassociated cells. Moreover, harmonics were lost in the liver when mice are subjected to restricted feeding, suggesting that at least one component of circadian harmonics is driven by feeding.

Bacterial Toxin-Antitoxin Systems: More Than Selfish Entities?:

Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

Alliance of Proteomics and Genomics to Unravel the Specificities of Sahara Bacterium Deinococcus deserti:

D. deserti belongs to the Deinococcaceae, a family of bacteria characterized by an exceptional ability to withstand the lethal effects of DNA-damaging agents, including ionizing radiation, UV light, and desiccation. It was isolated from Sahara surface sands, an extreme and nutrient-poor environment, regularly exposed to intense UV radiation, cycles of extreme temperatures, and desiccation. The evolution of organisms that are able to survive acute irradiation doses of 15,000 Gy is difficult to explain given the apparent absence of highly radioactive habitats on Earth over geologic time. Thus, it seems more likely that the natural selection pressure for the evolution of radiation-resistant bacteria was chronic exposure to nonradioactive forms of DNA damage, in particular those promoted by desiccation. Here, we report the first complete genome sequence of a bacterium, D. deserti VCD115, isolated from hot, arid desert surface sand. Accurate genome annotation of its 3,455 genes was guided by extensive proteome analysis in which 1,348 proteins were uncovered after growth in standard conditions. Supplementary genes involved in manganese import, in nutrient import, and in DNA repair were identified and are likely important for survival and adaptation of D. deserti to its hostile environment.

Meta-Analysis of Genome-Wide Scans for Human Adult Stature Identifies Novel Loci and Associations with Measures of Skeletal Frame Size:

The first genetic association studies of adult height have confirmed a role of many common variants in influencing human height, but to date, the genetic basis of differences between different skeletal components of height have not been addressed. Here, we take advantage of recent technical and methodological advances to examine the role of common genetic variants on both height and skeletal components of height. By examining nearly 20,000 individuals from the UK and the Netherlands, we provide statistically significant evidence that 17 genomic regions are associated with height, including four novel regions. We also examine, for the first time, the association of these 17 regions with skeletal size measurements of spine, femur, and hip axis length, a measurement of hip geometry known to influence the risk of osteoporotic fractures. We find that some height loci are also associated with these skeletal components, although further statistical tests will be required to verify if these genetic variants act differentially on the individual skeletal measurements. The knowledge generated by this and other studies will not only inform the genetics of human quantitative variation, but will also lead to the potential discovery of many medically important polymorphisms.

Manipulation of an Innate Escape Response in Drosophila: Photoexcitation of acj6 Neurons Induces the Escape Response:

The genetic analysis of behavior in Drosophila melanogaster has linked genes controlling neuronal connectivity and physiology to specific neuronal circuits underlying a variety of innate behaviors. We investigated the circuitry underlying the adult startle response, using photoexcitation of neurons that produce the abnormal chemosensory jump 6 (acj6) transcription factor. This transcription factor has previously been shown to play a role in neuronal pathfinding and neurotransmitter modality, but the role of acj6 neurons in the adult startle response was largely unknown. We show that the activity of these neurons is necessary for a wild-type startle response and that excitation is sufficient to generate a synthetic escape response. Further, we show that this synthetic response is still sensitive to the dose of acj6 suggesting that that acj6 mutation alters neuronal activity as well as connectivity and neurotransmitter production. These results extend the understanding of the role of acj6 and of the adult startle response in general. They also demonstrate the usefulness of activity-dependent characterization of neuronal circuits underlying innate behaviors in Drosophila, and the utility of integrating genetic analysis into modern circuit analysis techniques.

Androgen Receptor Copy Number Variation and Androgenetic Alopecia: A Case-Control Study:

The functional polymorphism that explains the established association of the androgen receptor (AR) with androgenetic alopecia (AGA) remains unidentified, but Copy Number Variation (CNV) might be relevant. CNV involves changes in copy number of large segments of DNA, leading to the altered dosage of gene regulators or genes themselves. Two recent reports indicate regions of CNV in and around AR, and these have not been studied in relation to AGA. The aim of this preliminary case-control study was to determine if AR CNV is associated with AGA, with the hypothesis that CNV is the functional AR variant contributing to this condition. Multiplex Ligation-dependent Probe Amplification was used to screen for CNV in five AR exons and a conserved, non-coding region upstream of AR in 85 men carefully selected as cases and controls for maximal phenotypic contrast. There was no evidence of CNV in AR in any of the cases or controls, and thus no evidence of significant association between AGA and AR CNV. The results suggest this form of genomic variation at the AR locus is unlikely to predispose to AGA.

Categories

More like this

Let's see what's new in PLoS Genetics, PLoS Computational Biology, PLoS Pathogens and PLoS ONE this week. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own…
There are 24 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one…
Steve Irwin's last paper is not the only exciting article to appear on PLoS ONE today - there are 40 more, and here are a few I am excited about - a veritable embarassment of riches! When am I ever going to find time to read them all! Oxytocin in the Circadian Timing of Birth (hey, it's by Erik…
A new paper on the genetics of height, Meta-Analysis of Genome-Wide Scans for Human Adult Stature Identifies Novel Loci and Associations with Measures of Skeletal Frame Size: Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution…