New and Exciting in PLoS ONE

There are 20 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

The Aversive Effect of Electromagnetic Radiation on Foraging Bats--A Possible Means of Discouraging Bats from Approaching Wind Turbines:

Large numbers of bats are killed by collisions with wind turbines and there is at present no accepted method of reducing or preventing this mortality. Following our demonstration that bat activity is reduced in the vicinity of large air traffic control and weather radars, we tested the hypothesis that an electromagnetic signal from a small portable radar can act as a deterrent to foraging bats. From June to September 2007 bat activity was compared at 20 foraging sites in northeast Scotland during experimental trials (radar switched on) and control trials (no radar signal). Starting 45 minutes after sunset, bat activity was recorded for a period of 30 minutes during each trial and the order of trials were alternated between nights. From July to September 2008 aerial insects at 16 of these sites were sampled using two miniature light-suction traps. At each site one of the traps was exposed to a radar signal and the other functioned as a control. Bat activity and foraging effort per unit time were significantly reduced during experimental trials when the radar antenna was fixed to produce a unidirectional signal therefore maximising exposure of foraging bats to the radar beam. However, although bat activity was significantly reduced during such trials, the radar had no significant effect on the abundance of insects captured by the traps.

Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm:

The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

Geographic Variation in Venom Allelic Composition and Diets of the Widespread Predatory Marine Gastropod Conus ebraeus:

Members of the predatory gastropod genus Conus use a venom comprised of a cocktail of peptide neurotoxins, termed conotoxins or conopeptides, to paralyze prey and conotoxin gene family members diversify via strong positive selection. Because Conus venoms are used primarily to subdue prey, the evolution of venoms is likely affected by predator-prey interactions. To identify the selective forces that drive the differentiation of venoms within species of Conus, we examined the distribution of alleles of a polymorphic O-superfamily conotoxin locus of Conus ebraeus at Okinawa, Guam and Hawaii. Previous analyses of mitochondrial cytochrome oxidase I gene sequences suggest that populations of C. ebraeus, a worm-eating Conus, are not structured genetically in the western and central Pacific. Nonetheless, because the sample size from Guam was relatively low, we obtained additional data from this location and reexamined patterns of genetic variation at the mitochondrial gene at Okinawa, Guam and Hawaii. We also utilized a DNA-based approach to identify prey items of individuals of C. ebraeus from Guam and compared this information to published data on diets at Okinawa and Hawaii. Our results show that conotoxin allelic frequencies differ significantly among all three locations, with strongest differentiation at Hawaii. We also confirm previous inferences that C. ebraeus exhibits no genetic differentiation between Okinawa, Guam and Hawaii at the mitochondrial locus. Finally, DNA-based analyses show that eunicid polychaetes comprise the majority of the prey items of C. ebraeus at Guam; while this results compares well with observed diet of this species at Okinawa, C. ebraeus preys predominantly on nereid polychaetes at Hawaii. These results imply that strong selection pressures affect conotoxin allelic frequencies. Based on the dietary information, the selection may derive from geographic variation in dietary specialization and local coevolutionary arms races between Conus and their prey.

Genome Analysis and Expression Patterns of Odorant-Binding Proteins from the Southern House Mosquito Culex pipiens quinquefasciatus:

Olfactory-based behaviors in mosquitoes are mediated by odorant-binding proteins (OBPs). They form a multigenic family involved in the peripheral events in insect olfaction, specifically the transport of odorants to membrane-bound odorant receptors. OBPs contribute to the remarkable sensitivity of the insect's olfactory system and may be involved in the selective transport of odorants. We have employed a combination of bioinformatics and molecular approaches to identify and characterize members of the "classic" OBP family in the Southern House mosquito Culex pipiens quinquefasciatus ( = Cx. quinquefasciatus), a vector of pathogens causing several human diseases. By taking advantage of the recently released genome sequences, we have identified fifty-three putative Cx. quinquefasciatus OBP genes by Blast searches. As a first step towards their molecular characterization, expression patterns by RT-PCR revealed thirteen genes that were detected exclusively and abundantly in chemosensory tissues. No clear differences were observed in the transcripts levels of olfactory-specific OBPs between antennae of both sexes using semi-quantitative RT-PCR. Phylogenetic and comparative analysis revealed orthologous of Cx. quinquefasciatus OBPs in Anopheles gambiae and Aedes aegypti. The identification of fifty-three putative OBP genes in Cx. quinquefasciatus highlights the diversity of this family. Tissue-specificity study suggests the existence of different functional classes within the mosquito OBP family. Most genes were detected in chemosensory as well as non chemosensory tissues indicating that they might be encapsulins, but not necessarily olfactory proteins. On the other hand, thirteen "true" OBP genes were detected exclusively in olfactory tissues and might be involved specifically in the detection of "key" semiochemicals. Interestingly, in Cx. quinquefasciatus olfactory-specific OBPs belong exclusively to four distinct phylogenetic groups which are particularly well conserved among three mosquito species.

Hypothalamic Neuroendocrine Circuitry is Programmed by Maternal Obesity: Interaction with Postnatal Nutritional Environment:

Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY) and suppressor proopiomelanocortin (POMC) in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD) consumption are unclear. Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control). At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid) metabolic markers were measured. Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain. Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanims. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.

More like this

Almost everyone tries to lose weight at some point, but we are remarkably bad at it; most people quickly return to their original weight after cessation of exercise or resumption of a normal diet. A review article by Patterson & Levin elucidates the pathways for this effect, and in the process…
A fascinating paper in CDC's journal, Emerging Infectious Diseases has more details on a problem we first mentioned, on the basis of news reports, back in June. It's about a possible relationship between West Nile Virus infection and the mortgage crisis, but the paper also gives a dramatic example…
When I find myself in times of trouble Ben and Jerry's comes to me Snarfing Chunky Monkey so sweetly, so sweetly. When stressed, some folks barely eat and consequently lose weight. Others, including myself, reach for high-fat-high-sugar (HFS) foods in an attempt to ameliorate the angst. Although…
Sensing and reacting to one's environment is necessary for survival. Different species have different expertise in regards to how they sense their environment. Humans, for example, have reduced olfactory abilities relative to other mammals, but excellent color vision. Cats have good night vision,…

The location and variation in bioluminescence is quite interesting. It does seem to match the location and phase of nasal NO production.

http://www.jiaci.org/issues/vol18issue4/vol18issue04-15.htm

NO is detected by chemiluminescence from reaction with O3. There might be enough O3 in ambient air to produce a small number of photons. There certainly is enough NO present in the nasal passages.

Low temperature does reduce nasal NO production. Lower NO (as from NOS inhibition) increases cortisol production, so an inverse correlation is not unexpected.

In looking more at the pictures, there seems to be a variation in the background too. That might be consistent with a volume source of photons from exhaled NO. That background also seems to vary in phase with the signal.