New and Exciting in PLoS this week

Four of the seven PLoS journals post new articles on Monday nights - let's see what is exciting and bloggable today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Predation upon Hatchling Dinosaurs by a New Snake from the Late Cretaceous of India:

Snakes first appear in the fossil record towards the end of the dinosaur era, approximately 98 million years ago. Snake fossils from that time are fragmentary, usually consisting of parts of the backbone. Relatively complete snake fossils preserving skulls and occasionally hindlimbs are quite rare and have only been found in marine sediments in Afro-Arabia and Europe or in terrestrial sediments in South America. Early snake phylogeny remains controversial, in part because of the paucity of early fossils. We describe a new 3.5-m-long snake from the Late Cretaceous of western India that is preserved in an extraordinary setting--within a sauropod dinosaur nest, coiled around an egg and adjacent the remains of a ca. 0.5-m-long hatchling. Other snake-egg associations at the same site suggest that the new snake frequented nesting grounds and preyed on hatchling sauropods. We named this new snake Sanajeh indicus because of its provenance and its somewhat limited oral gape. Sanajeh broadens the geographical distribution of early snakes and helps resolve their phylogenetic affinities. We conclude that large body size and jaw mobility afforded some early snakes a greater diversity of prey items than previously suspected.

This paper was already blogged by Anne-Marie Hodge and Ed Yong. Also read the associated primer: Studying Function and Behavior in the Fossil Record:

Inferring the behavior and function of ancient organisms is hard. Some paleontologists would say that it cannot be done because such hypotheses can never be testable, whereas others would say that this is surely a prime task for paleontology--to seek to bring ancient organisms back to life.

These issues have long troubled paleontologists. The founder of comparative anatomy, Georges Cuvier (1769-1832), insisted on the common pattern of the skeleton of living and fossil vertebrates and that anatomy could be reconstructed with confidence from incomplete fossil remains. Further, he argued that the skeleton of a living or extinct animal held unequivocal clues about function and behavior. Cuvier saw his mission to establish rules for comparative anatomy that would allow paleontologists to make certain statement with clarity and confidence [1], a key principle today, what one might call "evidence-based reconstruction" (for example, sharp teeth indicate a diet of meat rather than plants, or mammalian characters in the teeth indicate that the unknown animal was endothermic and nourished its young from mammary glands) as opposed to speculation ("this dinosaur was purple because I guess it was").

Canine Morphology: Hunting for Genes and Tracking Mutations:

As a result of domestication, selection for desirable phenotypes, and breed propagation, the domestic dog is unmatched in its diversity as a land mammal. Exhibiting extraordinary levels of both interbreed heterogeneity and intrabreed homogeneity, evidenced in part by the extensive linkage disequilibrium observed in many breeds, the dog provides an as-yet unrealized opportunity to uncover the molecular mechanisms that govern natural variation across mammalian species. We herein discuss recent advances in canine genomics that have made exploration of genetic mechanisms controlling breed-specific differences possible. We consider some examples where molecular mechanisms controlling simple traits have been uncovered. Finally, we reveal how combinations of genes produce complex phenotypes that can be revealed through studies of dog breeds featuring specific traits.

Atlantic Cod Piscidin and Its Diversification through Positive Selection:

Piscidins constitute a family of cationic antimicrobial peptides that are thought to play an important role in the innate immune response of teleosts. On the one hand they show a remarkable diversity, which indicates that they are shaped by positive selection, but on the other hand they are ancient and have specific targets, suggesting that they are constrained by purifying selection. Until now piscidins had only been found in fish species from the superorder Acanthopterygii but we have recently identified a piscidin gene in Atlantic cod (Gadus morhua), thus showing that these antimicrobial peptides are not restricted to evolutionarily modern teleosts. Nucleotide diversity was much higher in the regions of the piscidin gene that code for the mature peptide and its pro domain than in the signal peptide. Maximum likelihood analyses with different evolution models revealed that the piscidin gene is under positive selection. Charge or hydrophobicity-changing amino acid substitutions observed in positively selected sites within the mature peptide influence its amphipathic structure and can have a marked effect on its function. This diversification might be associated with adaptation to new habitats or rapidly evolving pathogens.

Modeling Disease Vector Occurrence when Detection Is Imperfect: Infestation of Amazonian Palm Trees by Triatomine Bugs at Three Spatial Scales:

Blood-sucking bugs of the genus Rhodnius are major vectors of Chagas disease. Control and surveillance of Chagas disease transmission critically depend on ascertaining whether households and nearby ecotopes (such as palm trees) are infested by these vectors. However, no bug detection technique works perfectly. Because more sensitive methods are more costly, vector searches face a trade-off between technical prowess and sample size. We compromise by using relatively inexpensive sampling techniques that can be applied multiple times to a large number of palms. With these replicated results, we estimate the probability of failing to detect bugs in a palm that is actually infested. We incorporate this information into our analyses to derive an unbiased estimate of palm infestation, and find it to be about 50% - twice the observed proportion of infested palms. We are then able to model the effects of regional, landscape, and local environmental variables on palm infestation. Individual palm attributes contribute overwhelmingly more than landscape or regional covariates to explaining infestation, suggesting that palm tree management can help mitigate risk locally. Our results illustrate how explicitly accounting for vector, pathogen, or host detection failures can substantially improve epidemiological parameter estimation when perfect detection techniques are unavailable.

Categories

More like this

Snakes have been around for nearly 100 million years and scientists have found many fossils of extinct species. But this astonishing specimen is different. This serpent is Sanajeh indicus. It is sitting in a dinosaur nest and its coils surround three eggs and the body of a hatchling. There are…
A recent study of dog genetics, published in PLoS, seeks to improve the quality of genetic research by better understanding the underlying patterns of genetic variation at the level of specific dog breeds. Sometimes we are interested in the evolutionary relationship between two "species" or…
There are 9 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own favourites: Snake Cathelicidin from Bungarus fasciatus Is a Potent…
There are 15 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one…