Stem Cells for Spinal Cord Injuries

The difficulty with treating spinal cord injuries arises from a number of factors. Firstly there is the primary damage to the axons of the spinal cord itself, resulting in mechanical damage that can inhibit neurotransmission and transport of cellular material to and from the distal cord. The damaged cord must also compensate for secondary damage such as the generation of free radicals, a lack of oxygen to the affected area (anoxia), glial scarring, and a host of other issues.

Your typical spinal neuron looks like this.

i-e5b3561be4c4597d3a7874eea19a460d-neuron.png

(Image snagged from http://www.steve.gb.com). The axon is a long process that extends from the cell body. Axons exit the central nervous system to innervate your muscles, relaying signals from your brain to the muscles and thus telling them when to contract. Your spinal cord is made up of bundles of these axons. Glial cells such as Schwann cells in the periphery or, within the cord itself, oligodendrocytes, wrap themselves around the axon, thus promoting faster transmission of electrical signals and also providing for general maintenance of the environment surrounding the cord, in part by shuttling different compounds around, responding to injury, etc.

Crush injuries to the spinal cord are common, as opposed to clean cuts that sever the cord without any damage to overlying tissue and bone. Crush injuries usually result in low blood flow to the affected area, producing an ischemic condition. Fluid buildup often results, leading to compression from swelling and secondary ischemia. This damage can exceed the amount produced from the primary injury. A whole host of toxic conditions lead to the production of molecules that recruit glial cells to infiltrate the site in an effort to affect repair; unfortunately however, poor design of the system leads to reactive gliosis, which basically means the glial cells are looking to "plug the hole" instead of forming a nice, stable tube to guide the damaged axon back to its target. This glial scarring is an enormous barrier to regeneration of the spinal cord and recovery of function.

Stem cells represent a viable treatment option following spinal cord injury. Undifferentiated stem cells excrete a variety of neurotrophic factors that encourage axon growth, promote the replacement of damaged non-neural structures such as blood vessels, promote the breakdown of the glial scar, and temper inflammatory responses. Embryonic stem cells in particular have a penchant for adopting the glial phenotype, that is they will readily transform into the support cells required by neurons (e.g. astrocytes, oligodendrocytes) once they are transfused into the site of injury. They may also be used to overcome glial repulsion of axons; myelinating cells produce inhibitory factors that can prevent an axon from regenerating.

With that in mind, there are a couple exciting papers coming out. The first I point to uses embryonic stem cells in the rat. These cells, when added to the site of damage along with a PDE-4 inhibitor to block the axon-repulsive effects of glia, were experimentally differentiated into a neural phenotype to form bridge connections between the degenerating axons and the muscle. The interesting manipulation in this paper was the infusion of cells that produce the trophic factor GDNF into the target muscle; GDNF provides a signal that attracts growth of axons from the embryonic stem cells. Here's a crappy MS Paint schematic I made to show what's going on.

i-976264c8b52977143faca31f02720e88-stem cell bridge.bmp

i-6c7b6f06e1aa80281cbdc9f75c0d648e-nmj.jpgHere is an example of a confocal microscopy image of neuromuscular junction formation. The green axons express GFP for labeling purposes, and the red is muscle as labeled by alpha-bungarotoxin. Note the tight association between muscle and axon. Functional recovery was assessed via hind-limb grip strength and mobility, and electrophysiological measures. Significant recovery is shown at 120 days.

A second paper that I won't go into in detail (primarily because it is only available as a PDF and I can't easily dissect out the pretty pictures to show you) expands upon the promise of animal stem cell models of spinal cord injury by using human neural stem cells in a rodent model. They demonstrate differentiation of the human cells into neuronal and glial tissue, axon remyelination, synapse formation, and locomotor recovery. It seems, then, that stem cell therapies hold promise for treatment of traumatic spinal cord injury. While much work remains to develop a stable, consistent model in animals we are definitely making progress, and a variety of very creative approaches are being used. Some of these approaches point directly to potential of human stem cells. A truly pro-life culture would embrace the exploration and use of these technologies for the benefit of all its citizens.

References

  • Garbossa D, Fontanella M, Fronda C, Benevello C, Muraca G, Ducati A, Vercelli A. Neurol Res. 2006 Jul;28(5):500-4.
  • Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Ann Neurol. 2006 Jun 26;60(1):32-44 [Epub ahead of print]
  • Cummings BJ, Uchida N, Tamaki SJ, Anderson AJ. Neurol Res. 2006 Jul;28(5):474-81.

More like this

This is rather clever. Houle et al at Case Western show in the Journal of Neuroscience that you can use a bacterial enzyme called chondroitinase to degrade scars in spinal cord lesions and enable regeneration of axons. Just for background, there is some interesting neurobiology when it comes to…
A team of researchers from Harvard and Columbia University Medical Center have reprogrammed skin cells from an 82-year-old woman suffering from amyotrophic lateral sclerosis to generate first stem cells and then motor neurons. This is a significant advance which could aid in the development of…
The unique capabilities of the human hand enable us to perform extremely fine movements, such as those needed to write or to thread a needle. The emergence of these capabilities was undoubtedly essential in human evolution: a combination of individually movable fingers, opposable thumbs and the…
This essay I wrote was shortlisted in the Association of British Science Writers competition in 2002. It was the first thing I posted on the old blog. It was written as an introduction to what were generally believed to be the fundamentals of brain function, starting from the molecular level and…

Have you ever heard of Geron corp? They've actually started a ES cell trial for spinal cord regrowth in humans.

Progress!

Thanks for the post. Do you know if any research has been done or been successful in remylenattion in the CNS in disorders such as MS? I see you mentioned stem cells transform into oligodendrocytes as well as schwann cells.

that's a sweet drawing of an injury! did you do that yourself? :)

Yeah, I got my inspiration from this book called "Brain Cell". Maybe you've heard of it? :D

i recently had a spinal cord injury, shattering c-6 c-7, and rupturing c3, c4, c5. on july 17 2006. is there any programs that anyone knows of to try these stem cells to see if it works on humans? how long is the length of time after the injury does one have to do it? how difficult is it to match the cell type ?

Stem cell therapy isn't available for humans in the USA. Go to China if you really want it. Its becoming quite sophisticated. Time is of the essence, though, as per results you can expect.

Aren't schwann cells only in the peripheral nervous system, not the central nervous system?

Hi there,
I am searching the internet for pictures of a healthy neuron - which I have found on this site - and a neuron with axonal degeneration (due to toxic neuropathy). Is ther anyone out there who can send me a picture of the latter one?
Thanks!

By annelies hartman (not verified) on 30 Nov 2008 #permalink

your cartoon implies a cell body outside the spinal cord synapsing on muscle. aren't all motor neuron cell bodies inside the spinal cord?

By tom phillips (not verified) on 15 Jun 2010 #permalink

TCA Cellular Therapy in Covington, Louisiana, is the first FDA Approved company to use Adult Stem Cell Therapy on Spinal Cord Injury and is enrolling patients for clinical trials. Their first patient is an Iraq Veteran. Spread the word - Stem Cell Therapy for Spinal Cord Injury, here in the USA. You can also visit joescamp@posterous.com for recent activity of TCA.

I shame the unlucky who suffer of this awful illness. I happily have a full life with no sickness or such. I am frightened about cells issues.

neurons suck really bad. Jesse smith is a fagel

By dallas roberto (not verified) on 30 Aug 2011 #permalink