Agapakis et. al.

My paper, "Insulation of a synthetic hydrogen metabolism circuit in bacteria" just came out in the Journal of Biological Engineering! And it's open access!

i-4d45eea5a92ea984d43b23fe603fe6e2-JBEfigure1-thumb-510x645-42118.jpgWe designed a metabolic circuit in bacteria that produces hydrogen (a potentially useful fuel) from natural precursors in the cell. The proteins in our synthetic pathway work to make hydrogen by transferring high-energy electrons from pyruvate, a common metabolite, to protons that are freely floating in the watery cytoplasm. The electrons transfer between the proteins through quantum-mechanical tunneling, which makes hydrogenases and other electron transferring proteins some of the craziest enzymes ever.

This tunneling happens so fast once two electron carrying proteins (of which there are many different types in the cell) hit each other, that it's difficult to make sure that all of the electrons from the original metabolite are getting to hydrogen. While sometimes the analogy between synthetic biology and electronics can be a bit tricky, in this case we really have to "insulate" the "wires" that are transferring electrons by preventing them from connecting to other "wires" and "shorting" the "circuit" (sorry to go overboard with the quotation marks but you get the idea). We tested a bunch of different biological methods to insulate the pathway, and all of them made small but significant improvements in the amount of hydrogen that we could produce. These methods can be used not only to optimize the amounts of hydrogen that we can make biologically, but can be applied to many other synthetic biology circuits that use electron transfer to get things done.

More like this

A lot of synthetic biology is about getting biology to be more like electrical engineering, designing genetic "logic gates" to create a living circuit board. Beyond analogies, however, cells have many fascinating electrical properties--proteins that transfer electrons like wires, membranes that…
One organism's trash is another organism's treasure. Our cellular wastes, carbon dioxide and water, nourish plants, which with added energy from sunlight produce the oxygen and sugars that we need to survive. At microscopic scales, these cycles of waste and food can get much more complicated, with…
There are 25 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with…
Today in my searches for the hot new trends in synthetic biology, I found a news article from Science Daily with an intriguing title: "Scientists Achieve First Rewire of Genetic Switches." Rewiring genetic switches sounds pretty neat, but this headline was intriguing to me first of all because it's…

Way cool! And congrats on the paper!

Excellent news! How would the energy per mole required to produce H2 in your system compare with traditional electrolysis, say, for producing fuel for fuel cells?

By complex field (not verified) on 06 Mar 2010 #permalink

Sorry for the late comment. Congratulations on the paper ... do you guys have a kinetic model of your system (perhaps in SBML format)?