Break The Standard Model? An Ultra-Rare Decay Threatens To Do What The LHC Can't (Synopsis)

"There are several categories of scientists in the world; those of second or third rank do their best but never get very far. Then there is the first rank, those who make important discoveries, fundamental to scientific progress. But then there are the geniuses, like Galilei and Newton. Majorana was one of these." -Enrico Fermi

Want to uncover the secrets to the Universe? Find out what particles and interactions there are beyond the Standard Model? The conventional approach is to take particles up to extremely high energies and smash them together, hoping that something new and exciting comes out. That’s a solid approach, but it has its limits. In particular, we haven’t seen anything new at the LHC other than the Higgs Boson, and might not even if we run it forever.

The particle tracks emanating from a high energy collision at the LHC in 2014. Although these collisions are plentiful and incredibly energetic, they have not yet yielded any compelling evidence of physics beyond the Standard Model. Image credit: Wikimedia Commons user Pcharito.

But another, more subtle approach might yield heavy dividends: simply gathering a very large number of unstable atoms and looking for a special type of decay: neutrinoless double beta decay. If this decay actually occurs in nature, it would mean that neutrinos aren’t like the other particles we know of, but rather that neutrinos and antineutrinos are the same particles: Majorana particles!

If this decay, where you have double beta decay and no neutrinos emitted, is observed to occur, it implies that neutrinos are Majorana particles. Image credit: Oak Ridge National Laboratory / UT-Battelle / Department of Energy.

What would all of this mean, and what would it teach us about our Universe? Find out about our simplest hope for going beyond the Standard Model today!

Tags

More like this

"Which is more likely? That the universe was designed just for us, or that we see the universe as having been designed just for us?" -Michael Shermer One of the problems with the Standard Model of particle physics is known as the hierarchy problem. If you were to calculate the masses of the…
Hector writes in and asks about someone from Sheffield in the UK who says that the Large Hadron Collider (LHC) will create Dark Matter: The massive ATLAS detector will measure the debris from collisions occurring in the Large Hadron Collider (LHC) which recreates the conditions found in the early…
"In recent years several new particles have been discovered which are currently assumed to be “elementary,” that is, essentially structureless. The probability that all such particles should be really elementary becomes less and less as their number increases. It is by no means certain that…
"Other than the laws of physics, rules have never really worked out for me." -Craig Ferguson Earlier this week, evidence was presented measuring a very rare decay rate -- albeit not incredibly precisely -- which point towards the Standard Model being it as far as new particles accessible to…