forces
Forgive me for all the posts on ESPN's Sport Science (example: Pulling and Power). I can't help myself.
In the short episode recently, Sport Science compared a football player pulling a sled with huge tires on it to a truck pulling stuff. I think their goal was to compare the power per kg from for the player and the truck to show how awesome humans are (and let me just say that humans ARE awesome). The problem was that they really didn't give the truck a fair chance.
For the first test, they had Marshawn Lynch pull 585 pounds of stuff. The real question should be: how hard does he have to…
Note: This is part of my ongoing attack of ESPN's show Sport Science. Really, I am continuing to look at the episode where they calculate a football player can produce 57,000 Watts by pulling some stuff. Wait...I don't want to limit my stuff to Sport Science. I see this stuff all the time. The problem is that people confuse the force needed to move something with its weight.
So, you want me to pull something? Great, I am a physics guy. I could probably pull maybe 100 pounds. That seems reasonable? But wait! I will increase it to 500 pounds! That is like two huge football players.…
I would like to continue my attack on the show Sport Science - ESPN. In this short episode, they are comparing the power of NFL player Marshawn Lynch with that of a truck. You can watch it here if you would like.
There are two things that are not quite right with this episode, first, the power thing. I will save the friction problem for another post. So, if you didn't watch that clip, the basic idea is that Marshawn pulls some heavy tires. Sport Science then calculates the power needed to do this and then repeats a similar thing for a truck. Quick review. What is power? In short,…
Suppose you want to move an empty paper clip box by shooting it with a toy dart gun. Why would you want to do this? Don't worry about that - this is my example and I am sticking with it. Should you shoot a dart that sticks to the box or should you shoot one that bounces off? I made a video of this exact situation. Note: you could obviously come up with other objects to do this with, but I always like to use more normal stuff.
In case it wasn't clear, the first dart bounced back and made the box go much faster (and farther) than the dart that stuck (inside) the box. The usual question is…
This is actually been sitting around for a while waiting for me to post it. Here is another short Christmas-toy demo. I am going to pull this yo-yo at different angles and on two different surfaces. Check it out.
What is going on here? Let me look at the first case where I pull the yo-yo and it slides without rolling. Here is a diagram.
Normally, I would just say - "hey - a free body diagram". And this is one, but you have to be careful. Normally, a free body diagram treats an object as though it were a point mass. You can't do that in this case because you have to consider rotation…
Since my previous post on R2-D2 flying was so popular, I thought I would follow it up. I was going to add these two points in the comments, but a separate post seems to make more sense.
Point 1 - R2 flies at a constant speed
Well, he obviously doesn't always have to fly at a constant speed. However, in the clip I was looking at there are two important things in the analysis. What angle is R2's thrusters at? Is R2 flying at a constant speed? I found a much better quality version of the flying R2 from Billy Brook's site. That helped out a lot. So, on to Tracker Video Analysis (I always…
You know I can't help but like Star Wars. Even with the new stuff, I watch it. Recently, I was watching the Clone Wars cartoon and noticed something odd about the way R2-D2 flies. I know what you are saying...."the odd thing is that he flies at all. Why didn't he fly in episodes 4-6?" Who knows. Here is the best image I could get of R2-D2 flying (from wookieepedia).
What is wrong? Well, maybe you can't tell from the image I posted. Here is a diagram of flying R2-D2.
If R2 (I can call him that because we are good friends) was flying like that, why would that be a problem? That would…
In a MythBusters episode some time ago, Adam and Jamie jumped off a building. There was some cool stuff in this, but I want to focus on the acceleration data they collected. Before jumping into a pit of foam, they first wanted to test the set up by dropping a dummy into it and measuring the accelerations. Lucky for me, they showed a quick screen shot of their data. Note: I previously posted the calculations for jumping and stopping off of a building.
For me, I see this and think - numerical integration. Before that, let me look at the physics. Here is a diagram of someone jumping off a…
It's odd that I have talked about these forces so much. First, I talked about how centrifugal forces were not real and the difference between centrifugal and centripetal forces. Then I talked about how sometimes, fake forces are good. Finally, I talked about the origin of the words centrifugal and centripetal. (note: "talked about" means wrote a blog post)
In thinking about centripetal forces, I realized that I could come up with a situation in which the centrifugal force is the centripetal force. This is great. I can end all the confusion between centrifugal and centripetal by making a…
A couple of commenters expressed concern over the use of centrifugal force after my rant on the use of the word force. So, what is the deal with these two terms? Are they ok to use? Are they real forces?
First, are they real forces?
It depends on what you mean by real. What is a force? Here is a quick overview of what a force is. I previously talked about real vs. non-real forces. For me, I say that if the force is essentially one of the 4 fundamental forces then it is "real". With this definition, centripetal force would be real and centrifugal not real.
Centripetal Force
Centripetal…
In part I of this post, I talked about the basics of projectile motion with no air resistance. Also in that post, I showed that (without air resistance) the angle to throw a ball for maximum range is 45 degrees. When throwing a football, there is some air resistance this means that 45 degree is not necessarily the angle for the greatest range. Well, can't I just do the same thing as before? It turns out that it is a significantly different problem when air resistance is added. Without air resistance, the acceleration was constant. Not so now, my friend.
The problem is that air…
On a previous episode of The MythBusters, Adam and Jamie made a lead balloon float. I was impressed. Anyway, I decided to give a more detailed explanation on how this happens. Using the thickness of foil they had, what is the smallest balloon that would float? If the one they created were filled all the way, how much could it lift?
First, how does stuff float at all? There are many levels that this question could be answered. I could start with the nature of pressure, but maybe I will save that for another day. So, let me start with pressure. The reason a balloon floats is because the air…
One of my students showed me this game, Fantastic Contraption. The basic idea is to use a couple of different "machine" parts to build something that will move an object into a target area. Not a bad game. But what do I do when I look at a game? I think - hey! I wonder what kind of physics this "world" uses. This is very similar to my analysis of the game Line Rider except completely different.
Fantastic Contraption gives the unique opportunity to build whatever you want. This is great for creating "experiments" in this world.
The first step is to "measure" some stuff. The game…
Fight Science is an entertaining show. Great graphics. The basic idea is to look at the science in different fighting styles. They had a clip-style commercial on it during a MythBusters episode I was watching. And from that, I can say that the kicking looked cool, but the science needs some work.
The Setup
The basic idea is that they wanted to compare kicks from different fighting styles. From what I can gather, they collected data by having some dudes kick this "kicking bag". During the kick, they measured the force exerted on the bag and they had a sensor on the kicker's leg - I…
Maybe this could fall under my "physics of parkour". It could also apply to the MythBusters "dumpster diving" episode. In both of these cases, the question is: how far can you jump off of something and not severely hurt yourself. They do this a lot in parkour. Here are some examples:
There are a ton of these things on youtube. Let me go ahead and say it. I would not recommend trying any of this stuff. Even reading this blog won't adequately prepare you. So, if you go ahead and try to do some cool jump, don't blame me for your injuries.
Now that the warning is out there - let me get on…
Have I not made it clear how much I like the MythBusters? Also, I am totally aware that they are not (nor do they claim to be) scientists. Really, this is what makes their show appealing (maybe?). So here is the problem now. And, it is not just the MythBusters - I see other shows making the same mistake.
If two things are colliding, how do you characterize the collision? No one really gets this right. For this particular episode, the MythBusters were looking at the collision between a bullet and gun. They wanted to see how hard it would be to shoot a gun out of someone's hand. The…
This is a requested post. Clearly, I do requests. The idea here is that I am going to give all the details needed to determine the equation of motion (and then model it) for a basic pendulum. Warning: this post is a little more advanced than my normal posts. There are some prerequisites. You need to understand derivatives. I will assume that you do. Here is a pendulum. (and this time I will stick to my variables)
Like I said before, this is a tricky problem unless I use some tricks. The problem is that the tension the string exerts on the mass changes. Here is my trick: think about a…
This post has been sitting in my mind for quite some time. Really, it is about mechanics - not about pendulums. What is the goal in mechanics (classical mechanics, if you like)? Generally, it is to find out how something changes over time. If you could get an equation of motion, that would do it.
As Matt (Built on Facts) did a while ago, it can be shown that you can get the equation of motion for a mass on a spring with normal Newtonian mechanics or with Lagrangian mechanics. Let me summarize two different ways of looking at the motion of an object.
The Newtonian Way
Maybe that isn't the…
This year's episode of Punkin Chunkin is coming up (I think tomorrow). Discovery just showed a teaser commercial with the specifications for one team's machine. If you are not familiar with Punkin Chunkin (World Championship Punkin Chunkin), the basic idea is to project some pumpkins. (note, if you waiting for the Discovery Channel show for the 2009 Punkin Chunkin, don't click on the previous link, it has the results already).
One of the categories for Punkin Chunkin is the centrifugal machine. These are machines that spin pumpkins around really fast in circles to shoot them. They are…
In my previous post on launching a pumpkin (punkin chunkin) I essentially just looked at what happens to the pumpkin after it is launched. How fast would you have to shoot it to go 1 mile? The answer seems to be around 1000 mph and they are currently shooting them around 600 mph.
The question for this post, how fast can you launch a pumpkin so that it does not smash into smithereens? First, why would it smash at all? Here is a diagram of a pumpkin being launched while still in the tube.
The pumpkin launcher works by releasing compressed air inside the tube. This means that the force…