An example of two collisions

Suppose you want to move an empty paper clip box by shooting it with a toy dart gun. Why would you want to do this? Don't worry about that - this is my example and I am sticking with it. Should you shoot a dart that sticks to the box or should you shoot one that bounces off? I made a video of this exact situation. Note: you could obviously come up with other objects to do this with, but I always like to use more normal stuff.

In case it wasn't clear, the first dart bounced back and made the box go much faster (and farther) than the dart that stuck (inside) the box. The usual question is: which dart had a greater change in momentum? You could also look at this in terms of impulse. First, the momentum principle:

i-d6e540064a3cd48aabe5d8b728d64cc0-2010-02-03_la_te_xi_t_1_11.jpg

In this form, it says that the product of net force and time the force is acting on an object is the change in momentum of that object. For this case, there is a collision. So, the important points for a collision are that the forces between the two colliding objects have are equal and opposite and that they last for the same amount of time. This means the the change in momentum of one object is the negative of the change in momentum of the other object.

With that idea, you can see already which has a larger change in momentum. When the dart bounced off (instead of sticking into) the box, the box had a higher speed (and went farther). So since the change in momentum of the box was larger in this case, so was the change in momentum of the dart. Time for another picture. Here is the dart bouncing off the box.

i-3897da767a5e4ec626a4beb49a36d022-2010-02-04_untitled_3.jpg

If the dart bounces back at a little bit lower speed, the change in momentum (in the x-direction) will be:

i-732c3ffc917d9b8976aab8402517e2b0-2010-02-04_la_te_xi_t_1_12.jpg

This is where many people make the mistake in saying the change in momentum is 2 kg*m/s. Ah ha! That is the change in the magnitude of the momentum, not the change in the momentum. You see, they are different.

Since the change in momentum for the dart is the same (but opposite direction) as the change in momentum of the box, it increases in momentum by 8 kg*m/s (and it started at zero). Now, here is a diagram for the case where the dart sticks. (I will assume that it starts with the same initial momentum)

i-35274f096160b29b3779f369d8d73d02-2010-02-04_untitled_8.jpg

So, in this case, the change in momentum of the dart is: (in the x-direction)

i-2720e6450464237ad75d0444ee4b33ed-2010-02-04_la_te_xi_t_1_13.jpg

This means that the box must have a change in momentum of 2 kg*m/s (and thus is slower than the case where the dart bounced off).

More like this

It's baseball playoff time, so sport shows are full of one of the great mysteries of the season, exemplified by this .gif (from SBNation): Raul Ibanez hitting a game-winning home run. GIF from SBNation. No, not "Raul Ibanez, really?" but "How can he make the ball go that far?" After all, even…
"If I have ever made any valuable discoveries, it has been due more to patient attention, than to any other talent." -Isaac Newton Born the year Galileo died, Isaac Newton is one of the most revered figures in all of physics. In addition to the work he did on optics, planetary motion and…
While Kenneth Ford's 101 Quantum Questions was generally good, there was one really regrettable bit, in Question 23: What is a "state of motion?" When giving examples of states, Ford defines the ground state as the lowest-energy state of a nucleus, then notes that its energy is not zero. He then…
It's that time of year again, when we count down the days to Isaac Newton's birthday (according to the Julian calendar, anyway), and how better to mark this than with mathematics? Thus, I'll post an equation a day until either Christmas Eve or I run out of ideas, and talk about what it means and…

Good Example! I teach conceptual physics classes in high school and enjoy clear and easy to do experiments that my students can do at their desks. Thank you for the video.

By Charles Wade (not verified) on 04 Feb 2010 #permalink

Hi,
I had a question about a completely unrelated field to this thread, but still a physics question I thought you may be able to help me out with.
I'm looking for information on sound technology, either present, past, or in development, that is designed to control the flow of water. A friend told me about a rather fanciful acoustic concept in which sound could possibly be used to create a vacuous space within water. I was wondering about the possibilities of this and whether this concept matches anything currently being studied.
Thanks, and sorry if this is totally the wrong place for this comment.
Dylan

By Dylan Przygocki (not verified) on 05 Feb 2010 #permalink

@Dylan,

Sorry, but I really don't know anything about water controlled with acoustics. If I find something, I will let you know.

How did you get it to stick the second time? It looked like the same dart. I might like to try this with my high school physics class.

@Dan,

There is a hole on one side of the box. The dart shoots into and sticks inside the box. I had to play around with the size of the hole a little to get it to stick.

If you have a good dart, you can use the suction cup to stick it - I couldn't get that to work.

Thanks, I am going to try this.

You inspired me to go out and buy a nerf gun for my physics classes. Thanks!

@Allison,

Everyone needs a nerf gun. I will try to come up a list of nerf-friendly physics experiments.