Might as well jump. Jump. Go ahead, jump. - Van Halen
Suppose everyone in the world got together and jumped. Would the Earth move? Yes. Would it be noticeable? Time for a calculation. Note: I am almost certain that I have done this before, but I can't find where.
Starting assumptions.
7 billion people.
Average weight: 50 kg (you know, kids and stuff)
Average vertical jump (center of mass): 0.3 meters - and I think that is generous.
Mass of the Earth: 6 x 1024 kg
Gravitational field near the surface of the Earth is constant with a magnitude of 9.8 N/kg
Ignore the interaction with the Sun and…
potential energy
I have seen several videos similar to this.
Real? Fake? How many tries did this take? Let the analysis begin. Before I do any analysis, let me state that I think this is not fake. I do not know that for sure, just my first guess.
How would I tell if it is real or fake? This is tricky. I can't really get a good trajectory of the ball to make some measurements on it because of the camera angle (next time people, make sure you set the camera up perpendicular to the plane of motion and far enough away to avoid perspective problems - thanks!) Really, the best I can do is to look at the…
Pre Reqs: electric potential, electric field, work-energy
To start, remember that for a constant electric field the change in electric potential energy would be:
WARNING: that is only for a constant electric field. I know you will be tempted later to use this for a different electric field, but DON'T DO IT. But if not that, then how do find the change in electric potential for a point charge? Let me start with a conceptual question. Suppose there were two point charges, both positive but one is held in place. If I hold the other point charge a distance r away from the other charge and…
Pre Reqs: Electric Field, Work-Energy, Potential Energy
If you are already familiar with the topics listed in the pre-reqs above, this will be uber-simple.
Potential energy - short version
The work-energy principle basically says:
In this most basic form, the energy is just kinetic energy (if you are not going near the speed of light). BUT...if you have a force that is conservative (meaning the work done does not depend on the path you take), then you can make it a potential energy and move it to the other side.
Warning: you can not have a force and have that force do both work AND be a…
So, I hear you are starting your second semester of physics. One of the cool things about physics is that the second semester still uses stuff from the first semester. Maybe you forgot some of that stuff, so here are the bare essentials you will need to get by (this is assuming you are in the algebra-based second semester of physics)
Vectors
Really, just about the entire semester course is about the electric and magnetic field. Both of these are easiest to represent as vectors. So, you pretty much need to know how to deal with vectors. Here are some reviews:
How do you represent vectors…
A new video from the Red Bull Stratos Jump guys came out. Here it is:
This reminds me of an unanswered question about the Stratos jump that I didn't address on my last post on this topic. Commenter Long Drop asked about how much Felix would heat up as he falls from 120,000 feet. This is a great question. The first, off the bat answer is that he won't heat up too much. Why do I say this? Well, when Joe Kittinger jumped from over 100,000 feet and didn't melt. Still, this is a great thing to calculate.
How do you calculate something like this? I will look at this in terms of energy. For…
In the last episode of MythBusters, Adam and Jamie wanted to test something that Jamie had said earlier:
"Two cars crashing head on at 50 mph is the same as one car crashing into a wall at 100 mph"
Jamie was wrong, but that is not what I am going to talk about. Instead, I am going to talk about Adam's small scale test of this situation. Really, it was a nice set up. Basically, he wanted to collide something into a wall at one speed and then double that speed. Then he was going to collide two things together at the lower speed. He had a cool way of measuring the collision. He put a piece…
Check this out.
So, the guy jumps from 150 feet into some cardboard boxes. Why are the boxes important? You want something that can stop you in the largest distance to make your acceleration the smallest. Here is my Dangerous Jumping Calculator. Basically, you put in how high you will jump from and how much distance you will take to land and it tells you your acceleration.
You will probably need this G-force tolerance info from wikipedia.
One problem - this calculator doesn't really work for this case. It doesn't take into account air resistance. Does air resistance even matter in this…
Let me be clear. I am not really an attacker. If someone wrote a report about ski jumping or something and misused the word "momentum", no big deal. However, if you have a show that claims to be about SCIENCE and you are obviously putting a lot of money into this show AND a whole bunch of people will see and think this is science - then you need to be a little careful. I think shows like ESPN's Sport Science are a good idea - you know, introduce some cool science ideas by using cool sports. This show just needs some help.
Yes, I know I make mistakes. I try to correct them when I become…
Wow. In xkcd 681 comic, there is an impressive illustration of the common term "gravity well". Here is a small part of that large image:
I can't resist. I must talk about this awesome illustration. My goal for this post is to help someone understand that comic (although the comic itself does a pretty good job).
Energy
Energy is the key here. Here, I will talk about two types of energy - kinetic energy and field energy. In this case, kinetic energy is basically just the energy associated with something moving. Field energy is the energy stored in the gravitational field. You could…
Maybe this could fall under my "physics of parkour". It could also apply to the MythBusters "dumpster diving" episode. In both of these cases, the question is: how far can you jump off of something and not severely hurt yourself. They do this a lot in parkour. Here are some examples:
There are a ton of these things on youtube. Let me go ahead and say it. I would not recommend trying any of this stuff. Even reading this blog won't adequately prepare you. So, if you go ahead and try to do some cool jump, don't blame me for your injuries.
Now that the warning is out there - let me get on…
I really shouldn't do this. I might be helping someone to set up something dangerous. But, I am going to anyway. Here is a question posted on some forum. (actually, it is from math help forum)
"I'm anticipating a good winter this year, one with lots of snow. My yard is sloped quite a bit and it would be the ideal place for a huge snowboard jump, only problem is I need to calculate how fast I will be traveling when I hit the jump, how high and what angle the jump should be, and the distance and angle of the landing ramp to optimize my range."
So, what am I going to do? I am going to give…
Note to self: don't do the mechanical equivalent of heat lab again. It doesn't really work that well and there are better labs to do.
So, what is the mechanical equivalent of heat lab? It is actually a pretty cool idea. Take and object and drop it. What happens to the kinetic energy the object had right before it hit the ground? Most of it goes into thermal energy of the object and surroundings. In this lab, the students measure the change in gravitational potential energy for a falling object (where object is really lead shot or something) and then measure the change in temperature in…
July 4th can be fun. One activity my family enjoys is playing in the lake at my parents house. Along with this comes the jumping off the dock. Great fun, and great physics. Here is a short clip.
Work Energy Example from Rhett Allain on Vimeo.
Notice that I violated my own rules for making videos. In particular, the camera was not perpendicular to the motion. Also, I can handle panning cameras, but not when there is nothing but sky in the background. This video is therefore not appropriate for a video analysis. That is ok. I don't need it to talk about physics. So, here is the…
This was on my 'to do' list, but Tom at Swans on Tea beat me to it. Basically, this grocery store has these plates that when depressed produce electrical energy. Tom does a good job pointing out that this is not free energy (the original article says this also). Clearly, the energy comes from the cars. How much would this cost the cars?
As always, let me start with some assumptions.
The original article says that the bumps will generate 30 kW of energy every hour. That is an odd thing to say. I am going to interpret that as 30 kW of power for all hours (every hour). They couldn't have…
Maybe this isn't the best video to analyze, but it sure is funny. I am not sure why it is so funny - maybe you should just watch it first.
Sledgehammer Funby Stressmaker
I don't really know why these guys are putting explosive on sledge hammers. Sure it looks fun, but I think I would pass. Anyway, here is the part I was curious about.
Did the exploding hammer lift him off the ground, or did he jump as a reaction to the explosion. It kind of looks like he was lifted, but I am not sure that is possible. Video analysis to the rescue. (using Tracker Video) So, I assumed the sledge hammer…
I made a gamble and my gamble failed. It really wasn't my fault. In the preview, they showed this huge barrel thing dropping on a see saw. It looked something like this: (I could search for 30 minutes for a picture of this online, or just draw it)
At first glance, this looked JUST like that video of the pile driver shooting the skydiver up in the air. You can see how I would make that mistake. To make up for my mistake, I will give a very simple analysis of the see saw myth. The basic idea is that something comes down, hits the see saw and sends the other thing flying up. If I assume…
Last night was Wednesday, so of course I watched Mythbusters. You never know when a good blogging opportunity will come up. I could talk about the kinetic energy of arrows, but instead let me talk about their episode for next week. I only caught a glimpse of it in the preview. It looks like they are doing something about jumping on a see-saw and launching the other person. It could be this video they are looking at:
EMBED-Extreme Catapulting - Watch more free videos
From my analysis of this video, I found that the likely outcome was a broken board (if it were not fake). Also, if the…
I finally saw the movie Iron Man. It was good. I feel that I am qualified to evaluate the movie. When I was in high school, I was totally into comic books. Mostly Spider-man, but I still have a significant collection of Iron Man comics. Ok, now you know I am not an Iron Man attacker. I will now attack the movie. Sorry, it's what I do (remember, I already said I liked it). There are several things I could comment on, in fact I recall some other blog talking about the physics of Iron Man.
My attack will center on the scene where Tony Stark (Iron Man) escapes from captivity with his home…
Here is a video of a guy jumping 35 feet into a pool of water only 1 foot deep.
UPDATE: Apparently, that video went away. Here is another version.
How does this work?
I don't think I even need to do a video analysis of this motion, all the important info is given. I will assume that air resistance did not play a signficant role (and that is a good assumption - or good enough - see this for example: motion of a falling tennis ball). So, here is the situation.
Part 1: guy falls 35 feet 5 inches (10.8 meters).
![Screenshot 16sd](http://scienceblogs.com/dotphysics/wp-content/uploads/2008/11/…