New and Exciting in PLoS Biology

The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis by Michael F. Covington and Stacey L. Harmer:

Most higher organisms, including plants and animals, have developed a time-keeping mechanism that allows them to anticipate daily fluctuations of environmental parameters such as light and temperature. This circadian clock efficiently coordinates plant growth and metabolism with respect to time of day by producing self-sustained rhythms of gene expression with an approximately 24-h period. One of the major contributors in specifying spatial patterns of plant growth and development is auxin, a hormone essential for nearly all stages of plant development. Auxin also helps the plant orient itself properly in response to environmental cues such as light, gravity, and water. We have now found circadian-regulated expression of components from nearly every step in the auxin-signaling pathway, from synthesis to response. We demonstrate the relevance of this observation by showing that plants have differential sensitivity to auxin at different times of day: the clock controls plant sensitivity to auxin at both the level of transcription and stem growth. Our work demonstrates an intimate connection between the clock- and auxin-signaling pathways, and suggests that other auxin-regulated processes may also be under circadian control.

Also read the synopsis by Mary Hoff:

Buried in historical scientific literature are hints that auxin might affect plants differently at different times of day. This makes sense from an adaptive standpoint: an internal clock allows plants to respond to stimuli such as sun, rain, and being eaten in the context of regular rhythms of the inescapable world around them. But how do they do it? The mechanisms tuning growth to internal rhythms, with implications for everything from growing crops to protecting biodiversity in the face of global climate change, have remained a mystery. Now, Michael Covington and Stacey Harmer have discovered clues to the roots of rhythmic growth.

Spatial Learning Depends on Both the Addition and Removal of New Hippocampal Neurons by David Dupret, Annabelle Fabre, Màtè Dàniel Döbrössy, Aude Panatier, José Julio RodrÃguez, Stéphanie Lamarque, Valerie Lemaire, Stephane H. R. Oliet, Pier-Vincenzo Piazza, and Djoher Nora Abrous:

The birth of adult hippocampal neurons is associated with enhanced learning and memory performance. In particular, spatial learning increases the survival and the proliferation of newborn cells, but surprisingly, it also decreases their number. Here, we hypothesized that spatial learning also depends upon the death of newborn hippocampal neurons. We examined the effect of spatial learning in the water maze on cell birth and death in the rodent hippocampus. We then determined the influence of an inhibitor of cell death on memory abilities and learning-induced changes in cell death, cell proliferation, and cell survival. We show that learning increases the elimination of the youngest newborn cells during a specific developmental period. The cell-death inhibitor impairs memory abilities and blocks the learning-induced cell death, the survival-promoting effect of learning on older newly born neurons, and the subsequent learning-induced proliferation of neural precursors. These results show that spatial learning induces cell death in the hippocampus, a phenomenon that subserves learning and is necessary for both the survival of older newly born neurons and the proliferation of neural precursors. These findings suggest that during learning, neuronal networks are sculpted by a tightly regulated selection of newly born neurons and reveal a novel mechanism mediating learning and memory in the adult brain.

More like this

In 2000, researchers from the Yale University School of Medicine made a surprising discovery that would start to change the way we think about the causes of depression. Ronald Duman and his colleagues chronically administered different classes of antidepressants to rats, and found that this…
Around 15 years ago, researchers discovered that the adult rodent brain contains discrete populations of stem cells which continue to divide and produce new neurons throughout life. This discovery was an important one, as it overturned a persistent dogma in neuroscience which held that the adult…
Radiation therapy is a common treatment for adults and children who present with tumours in or close to the brain. In the last 20 years, advances in radiotherapy have significantly improved the prognosis for brain cancer patients. However, the resulting longer survival rates reveal that the therapy…
A significant proportion of people with HIV/ AIDS develop neurological symptoms, such as impaired co-ordination, personality changes, deficits in learning and memory, and mania and depression. HIV-associated dementia is difficult to treat; although highly active anti-retroviral therapy (HAART) has…