Travelling delayed me a little bit, but as you already learned to expect by now, new articles get published on PLoS ONE on Tuesday afternoons. Before I showcase the papers I personally find interesting, first let me remind you to join in the discussion on our ongoing Journal Club on the article Parts, Wholes, and Context in Reading: A Triple Dissociation: read, rate, annotate, comment, blog about and send trackbacks if your software supports them. Now, to this week's wealth of papers - 24 appeared this week and here are those I like the best:
Analysis of the Trajectory of Drosophila melanogaster in a Circular Open Field Arena:
Studying the neural mechanisms of behavior often requires researchers to accurately follow the movement of a free-living organism over extended periods of time. In this study, Valente and colleagues use a video tracking system to record and describe the behavior and interaction of a single fly walking in an open arena. The methods used in this study may prove valuable for other similar behavioral studies.
Mast Fruiting Is a Frequent Strategy in Woody Species of Eastern South America:
The synchronized production of large seed crops in the tropics is thought to be extremely rare. These authors developed a model for the variability of seed production of 20 climbing vine species and 28 tree species in a Central French Guianan tropical rainforest over a five-year period. Their results reveal that almost a quarter of the species studied showed patterns of synchronized mass seed production, suggesting that the process may encourage species coexistence.
Growth Environment and Sex Differences in Lipids, Body Shape and Diabetes Risk:
This paper reports a cross-sectional study that aims to investigate whether the place of birth and early life environment is associated with ischaemic heart disease (IHD), diabetes and obesity risks in men and women. The results show that differences in early life environment affect IHD risk in men and women differently. Such dichotomies may explain the trends and sex differences in IHD that are seen with economic development.
Plants defend themselves against herbivorous insects, utilizing both constitutive and inducible defenses. Induced defenses are controlled by several phytohormone-mediated signaling pathways. Here, we analyze transcriptional changes in the North American Arabidopsis relative Boechera divaricarpa in response to larval herbivory by the crucifer specialist lepidopteran Plutella xylostella (diamondback moth) and by the generalist lepidopteran Trichoplusia ni (cabbage semilooper), and compare them to wounding and exogenous phytohormone application.
We use a custom macroarray constructed from B. divaricarpa herbivory-regulated cDNAs identified by suppression subtractive hybridization and from known stress-responsive A. thaliana genes for transcript profiling after insect herbivory, wounding and in response to jasmonate, salicylate and ethylene. In addition, we introduce path analysis as a novel approach to analyze transcript profiles. Path analyses reveal that transcriptional responses to the crucifer specialist P. xylostella are primarily determined by direct effects of the ethylene and salicylate pathways, whereas responses to the generalist T. ni are influenced by the ethylene and jasmonate pathways. Wound-induced transcriptional changes are influenced by all three pathways, with jasmonate having the strongest effect.
Our results show that insect herbivory is distinct from simple mechanical plant damage, and that different lepidopteran herbivores elicit different transcriptional responses.
Horizontal Gene Transfer Regulation in Bacteria as a "Spandrel" of DNA Repair Mechanisms:
Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.
Illusory Stimuli Can Be Used to Identify Retinal Blind Spots:
Identification of visual field loss in people with retinal disease is not straightforward as people with eye disease are frequently unaware of substantial deficits in their visual field, as a consequence of perceptual completion ("filling-in") of affected areas. We attempted to induce a compelling visual illusion known as the induced twinkle after-effect (TwAE) in eight patients with retinal scotomas. Half of these patients experience filling-in of their scotomas such that they are unaware of the presence of their scotoma, and conventional campimetric techniques can not be used to identify their vision loss. The region of the TwAE was compared to microperimetry maps of the retinal lesion. Six of our eight participants experienced the TwAE. This effect occurred in three of the four people who filled-in their scotoma. The boundary of the TwAE showed good agreement with the boundary of lesion, as determined by microperimetry. For the first time, we have determined vision loss by asking patients to report the presence of an illusory percept in blind areas, rather than the absence of a real stimulus. This illusory technique is quick, accurate and not subject to the effects of filling-in.
Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest.
A New Method to Extract Dental Pulp DNA: Application to Universal Detection of Bacteria:
Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria.
We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7%) from 12 individuals (14%). Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence.
The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology.
- Log in to post comments