New and Exciting in PLoS ONE

There are 26 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Mating First, Mating More: Biological Market Fluctuation in a Wild Prosimian:

In biology, economics, and politics, distributive power is the key for understanding asymmetrical relationships and it can be obtained by force (dominance) or trading (leverage). Whenever males cannot use force, they largely depend on females for breeding opportunities and the balance of power tilts in favour of females. Thus, males are expected not only to compete within their sex-class but also to exchange services with the opposite sex. Does this mating market, described for humans and apes, apply also to prosimians, the most ancestral primate group? To answer the question, we studied a scent-oriented and gregarious lemur, Propithecus verreauxi (sifaka), showing female dominance, promiscuous mating, and seasonal breeding. We collected 57 copulations involving 8 males and 4 females in the wild (Berenty Reserve, South Madagascar), and data (all occurrences) on grooming, aggressions, and marking behaviour. We performed the analyses via exact Spearman and matrix correlations. Male mating priority rank correlated with the frequency of male countermarking over female scents but not with the proportion of fights won by males over females. Thus, males competed in an olfactory tournament more than in an arena of aggressive encounters. The copulation frequency correlated neither with the proportion of fights won by males nor with the frequency of male countermarking on female scents. Male-to-female grooming correlated with female-to-male grooming only during premating. Instead, in the mating period male-to-female grooming correlated with the copulation frequency. In short, the biological market underwent seasonal fluctuations, since males bargained grooming for sex in the mating days and grooming for itself in the premating period. Top scent-releasers gained mating priority (they mated first) and top groomers ensured a higher number of renewed copulations (they mated more). In conclusion, males maximize their reproduction probability by adopting a double tactic and by following market fluctuations.

A Parsimonious Approach to Modeling Animal Movement Data:

Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models), resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (

Ant Queen Egg-Marking Signals: Matching Deceptive Laboratory Simplicity with Natural Complexity:

Experiments under controlled laboratory conditions can produce decisive evidence for testing biological hypotheses, provided they are representative of the more complex natural conditions. However, whether this requirement is fulfilled is seldom tested explicitly. Here we provide a lab/field comparison to investigate the identity of an egg-marking signal of ant queens. Our study was based on ant workers resolving conflict over male production by destroying each other's eggs, but leaving queen eggs unharmed. For this, the workers need a proximate cue to discriminate between the two egg types. Earlier correlative evidence indicated that, in the ant Pachycondyla inversa, the hydrocarbon 3,11-dimethylheptacosane (3,11-diMeC27) is more abundant on the surface of queen-laid eggs. We first tested the hypothesis that 3,11-diMeC27 functions as a queen egg-marking pheromone using laboratory-maintained colonies. We treated worker-laid eggs with synthetic 3,11-diMeC27 and found that they were significantly more accepted than sham-treated worker-laid eggs. However, we repeated the experiment with freshly collected field colonies and observed no effect of treating worker-laid eggs with 3,11-diMeC27, showing that this compound by itself is not the natural queen egg-marking pheromone. We subsequently investigated the overall differences of entire chemical profiles of eggs, and found that queen-laid eggs in field colonies are more distinct from worker-laid eggs than in lab colonies, have more variation in profiles, and have an excess of longer-chain hydrocarbons. Our results suggest that queen egg-marking signals are significantly affected by transfer to the laboratory, and that this change is possibly connected to reduced queen fertility as predicted by honest signaling theory. This change is reflected in the worker egg policing response under field and laboratory conditions.

Intron Evolution: Testing Hypotheses of Intron Evolution Using the Phylogenomics of Tetraspanins:

Although large scale informatics studies on introns can be useful in making broad inferences concerning patterns of intron gain and loss, more specific questions about intron evolution at a finer scale can be addressed using a gene family where structure and function are well known. Genome wide surveys of tetraspanins from a broad array of organisms with fully sequenced genomes are an excellent means to understand specifics of intron evolution. Our approach incorporated several new fully sequenced genomes that cover the major lineages of the animal kingdom as well as plants, protists and fungi. The analysis of exon/intron gene structure in such an evolutionary broad set of genomes allowed us to identify ancestral intron structure in tetraspanins throughout the eukaryotic tree of life. We performed a phylogenomic analysis of the intron/exon structure of the tetraspanin protein family. In addition, to the already characterized tetraspanin introns numbered 1 through 6 found in animals, three additional ancient, phase 0 introns we call 4a, 4b and 4c were found. These three novel introns in combination with the ancestral introns 1 to 6, define three basic tetraspanin gene structures which have been conserved throughout the animal kingdom. Our phylogenomic approach also allows the estimation of the time at which the introns of the 33 human tetraspanin paralogs appeared, which in many cases coincides with the concomitant acquisition of new introns. On the other hand, we observed that new introns (introns other than 1-6, 4a, b and c) were not randomly inserted into the tetraspanin gene structure. The region of tetraspanin genes corresponding to the small extracellular loop (SEL) accounts for only 10.5% of the total sequence length but had 46% of the new animal intron insertions. Our results indicate that tests of intron evolution are strengthened by the phylogenomic approach with specific gene families like tetraspanins. These tests add to our understanding of genomic innovation coupled to major evolutionary divergence events, functional constraints and the timing of the appearance of evolutionary novelty.

Insect-Specific microRNA Involved in the Development of the Silkworm Bombyx mori:

MicroRNAs (miRNAs) are endogenous non-coding genes that participate in post-transcription regulation by either degrading mRNA or blocking its translation. It is considered to be very important in regulating insect development and metamorphosis. We conducted a large-scale screening for miRNA genes in the silkworm Bombyx mori using sequence-by-synthesis (SBS) deep sequencing of mixed RNAs from egg, larval, pupal, and adult stages. Of 2,227,930 SBS tags, 1,144,485 ranged from 17 to 25 nt, corresponding to 256,604 unique tags. Among these non-redundant tags, 95,184 were matched to the silkworm genome. We identified 3,750 miRNA candidate genes using a computational pipeline combining RNAfold and TripletSVM algorithms. We confirmed 354 miRNA genes using miRNA microarrays and then performed expression profile analysis on these miRNAs for all developmental stages. While 106 miRNAs were expressed in all stages, 248 miRNAs were egg- and pupa-specific, suggesting that insect miRNAs play a significant role in embryogenesis and metamorphosis. We selected eight miRNAs for quantitative RT-PCR analysis; six of these were consistent with our microarray results. In addition, we searched for orthologous miRNA genes in mammals, a nematode, and other insects and found that most silkworm miRNAs are conserved in insects, whereas only a small number of silkworm miRNAs has orthologs in mammals and the nematode. These results suggest that there are many miRNAs unique to insects.

More like this

Oohhhh! That is what PLoS needs, more wild monkey* sex!

*Yes, I know, prosimians are not catarrhines.

By afarensis, FCD (not verified) on 04 Mar 2009 #permalink