There are 25 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
The Molecular Ecology of the Extinct New Zealand Huia:
The extinct Huia (Heteralocha acutirostris) of New Zealand represents the most extreme example of beak dimorphism known in birds. We used a combination of nuclear genotyping methods, molecular sexing, and morphometric analyses of museum specimens collected in the late 19th and early 20th centuries to quantify the sexual dimorphism and population structure of this extraordinary species. We report that the classical description of Huia as having distinctive sex-linked morphologies is not universally correct. Four Huia, sexed as females had short beaks and, on this basis, were indistinguishable from males. Hence, we suggest it is likely that Huia males and females were indistinguishable as juveniles and that the well-known beak dimorphism is the result of differential beak growth rates in males and females. Furthermore, we tested the prediction that the social organisation and limited powers of flight of Huia resulted in high levels of population genetic structure. Using a suite of microsatellite DNA loci, we report high levels of genetic diversity in Huia, and we detected no significant population genetic structure. In addition, using mitochondrial hypervariable region sequences, and likely mutation rates and generation times, we estimated that the census population size of Huia was moderately high. We conclude that the social organization and limited powers of flight did not result in a highly structured population.
Intramolecular Regulation of Phosphorylation Status of the Circadian Clock Protein KaiC:
KaiC, a central clock protein in cyanobacteria, undergoes circadian oscillations between hypophosphorylated and hyperphosphorylated forms in vivo and in vitro. Structural analyses of KaiC crystals have identified threonine and serine residues in KaiC at three residues (T426, S431, and T432) as potential sites at which KaiC is phosphorylated; mutation of any of these three sites to alanine abolishes rhythmicity, revealing an essential clock role for each residue separately and for KaiC phosphorylation in general. Mass spectrometry studies confirmed that the S431 and T432 residues are key phosphorylation sites, however, the role of the threonine residue at position 426 was not clear from the mass spectrometry measurements. Mutational approaches and biochemical analyses of KaiC support a key role for T426 in control of the KaiC phosphorylation status in vivo and in vitro and demonstrates that alternative amino acids at residue 426 dramatically affect KaiC's properties in vivo and in vitro, especially genetic dominance/recessive relationships, KaiC dephosphorylation, and the formation of complexes of KaiC with KaiA and KaiB. These mutations alter key circadian properties, including period, amplitude, robustness, and temperature compensation. Crystallographic analyses indicate that the T426 site is phosphorylatible under some conditions, and in vitro phosphorylation assays of KaiC demonstrate labile phosphorylation of KaiC when the primary S431 and T432 sites are blocked. T426 is a crucial site that regulates KaiC phosphorylation status in vivo and in vitro and these studies underscore the importance of KaiC phosphorylation status in the essential cyanobacterial circadian functions. The regulatory roles of these phosphorylation sites-including T426-within KaiC enhance our understanding of the molecular mechanism underlying circadian rhythm generation in cyanobacteria.
Coral Skeletons Defend against Ultraviolet Radiation:
Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage. By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation. Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life.
The Progressive Increase of Food Waste in America and Its Environmental Impact:
Food waste contributes to excess consumption of freshwater and fossil fuels which, along with methane and CO2 emissions from decomposing food, impacts global climate change. Here, we calculate the energy content of nationwide food waste from the difference between the US food supply and the food consumed by the population. The latter was estimated using a validated mathematical model of metabolism relating body weight to the amount of food eaten. We found that US per capita food waste has progressively increased by ~50% since 1974 reaching more than 1400 kcal per person per day or 150 trillion kcal per year. Food waste now accounts for more than one quarter of the total freshwater consumption and ~300 million barrels of oil per year.
Elucidating geographic locations from where migratory birds are recruited into adult breeding populations is a fundamental but largely elusive goal in conservation biology. This is especially true for species that breed in remote northern areas where field-based demographic assessments are logistically challenging. Here we used hydrogen isotopes (δD) to determine natal origins of migrating hatch-year lesser scaup (Aythya affinis) harvested by hunters in the United States from all North American flyways during the hunting seasons of 1999-2000 (n = 412) and 2000-2001 (n = 455). We combined geospatial, observational, and analytical data sources, including known scaup breeding range, δD values of feathers from juveniles at natal sites, models of δD for growing-season precipitation, and scaup band-recovery data to generate probabilistic natal origin landscapes for individual scaup. We then used Monte Carlo integration to model assignment uncertainty from among individual δD variance estimates from birds of known molt origin and also from band-return data summarized at the flyway level. We compared the distribution of scaup natal origin with the distribution of breeding population counts obtained from systematic long-term surveys. Our analysis revealed that the proportion of young scaup produced in the northern (above 60°N) versus the southern boreal and Prairie-Parkland region was inversely related to the proportions of breeding adults using these regions, suggesting that despite having a higher relative abundance of breeding adults, the northern boreal region was less productive for scaup recruitment into the harvest than more southern biomes. Our approach for evaluating population declines of migratory birds (particularly game birds) synthesizes all available distributional data and exploits the advantages of intrinsic isotopic markers that link individuals to geography.
Despite the ubiquity of raptors in terrestrial ecosystems, many aspects of their predatory behaviour remain poorly understood. Surprisingly little is known about the morphology of raptor talons and how they are employed during feeding behaviour. Talon size variation among digits can be used to distinguish families of raptors and is related to different techniques of prey restraint and immobilisation. The hypertrophied talons on digits (D) I and II in Accipitridae have evolved primarily to restrain large struggling prey while they are immobilised by dismemberment. Falconidae have only modest talons on each digit and only slightly enlarged D-I and II. For immobilisation, Falconini rely more strongly on strike impact and breaking the necks of their prey, having evolved a 'tooth' on the beak to aid in doing so. Pandionidae have enlarged, highly recurved talons on each digit, an adaptation for piscivory, convergently seen to a lesser extent in fishing eagles. Strigiformes bear enlarged talons with comparatively low curvature on each digit, part of a suite of adaptations to increase constriction efficiency by maximising grip strength, indicative of specialisation on small prey. Restraint and immobilisation strategy change as prey increase in size. Small prey are restrained by containment within the foot and immobilised by constriction and beak attacks. Large prey are restrained by pinning under the bodyweight of the raptor, maintaining grip with the talons, and immobilised by dismemberment (Accipitridae), or severing the spinal cord (Falconini). Within all raptors, physical attributes of the feet trade off against each other to attain great strength, but it is the variable means by which this is achieved that distinguishes them ecologically. Our findings show that interdigital talon morphology varies consistently among raptor families, and that this is directly correlative with variation in their typical prey capture and restraint strategy.
Modulation of Motor Area Activity by the Outcome for a Player during Observation of a Baseball Game:
Observing competitive games such as sports is a pervasive entertainment among humans. The inclination to watch others play may be based on our social-cognitive ability to understand the internal states of others. The mirror neuron system, which is activated when a subject observes the actions of others, as well as when they perform the same action themselves, seems to play a crucial role in this process. Our previous study showed that activity of the mirror neuron system was modulated by the outcome of the subject's favored player during observation of a simple competitive game (rock-paper-scissors). However, whether the mirror neuron system responds similarly in a more complex and naturalistic sports game has not yet been fully investigated. In the present study, we measured the activity of motor areas when the subjects, who were amateur baseball field players (non-pitchers), watched short movie clips of scenes in professional baseball games. The subjects were instructed to support either a batter or a pitcher when observing the movie clip. The results showed that activity in the motor area exhibited a strong interaction between the subject's supported side (batter or pitcher) and the outcome (a hit or an out). When the subject supported the batter, motor area activity was significantly higher when the batter made an out than when he made a hit. However, such modulation was not apparent when the subject supported the pitcher. This result indicates that mirror neuron system activity is modulated by the outcome for a particular player in a competitive game even when observing a complex and naturalistic sports game. We suggest that our inclination to watch competitive games is facilitated by this characteristic of the mirror neuron system.
A Note on Trader Sharpe Ratios:
Traders in the financial world are assessed by the amount of money they make and, increasingly, by the amount of money they make per unit of risk taken, a measure known as the Sharpe Ratio. Little is known about the average Sharpe Ratio among traders, but the Efficient Market Hypothesis suggests that traders, like asset managers, should not outperform the broad market. Here we report the findings of a study conducted in the City of London which shows that a population of experienced traders attain Sharpe Ratios significantly higher than the broad market. To explain this anomaly we examine a surrogate marker of prenatal androgen exposure, the second-to-fourth finger length ratio (2D:4D), which has previously been identified as predicting a trader's long term profitability. We find that it predicts the amount of risk taken by traders but not their Sharpe Ratios. We do, however, find that the traders' Sharpe Ratios increase markedly with the number of years they have traded, a result suggesting that learning plays a role in increasing the returns of traders. Our findings present anomalous data for the Efficient Markets Hypothesis.
A Prospective Controlled Trial of Routine Opt-Out HIV Testing in a Men's Jail:
Approximately 10 million Americans enter jails annually. The Centers for Disease Control and Prevention now recommends routine opt-out HIV testing in these settings. The logistics for performing routine opt-out HIV testing within jails, however, remain controversial. The objective of this study was to evaluate the optimal time to routinely HIV test newly incarcerated jail detainees using an opt-out strategy. This prospective, controlled trial of routine opt-out HIV testing was conducted among 298 newly incarcerated male inmates in an urban men's jail in New Haven, Connecticut. 298 sequential entrants to the men's jail over a three week period in March and April 2008 were assigned to be offered routine opt-out HIV testing at one of three points after incarceration: immediate (same day, n = 103), early (next day, n = 98), or delayed (7 days, n = 97). The primary outcome was the proportion of men in each group consenting to testing. Routine opt-out HIV testing was significantly higher for the early (53%: AOR = 2.6; 95% CI = 1.5 to 4.7) and immediate (45%: AOR = 2.3; 95% CI = 1.3 to 4.0) testing groups compared to the delayed (33%) testing group. The immediate and early testing groups, however, did not significantly differ (p = 0.67). In multivariate analyses, factors significantly associated with routine opt-out HIV testing were assignment to the 'early' testing group (p = 0.0003) and low (bond â¥$5,000, immigration or federal charges or pre-sentencing >30 days) likelihood of early release (p = 0.04). Two subjects received preliminary positive results and one of them was subsequently confirmed HIV seropositive. In this men's jail where attrition was high, routine opt-out HIV testing was not only feasible, but resulted in the highest rates of HIV testing when performed within 24 hours of incarceration.
Routine Opt-Out HIV Testing Strategies in a Female Jail Setting: A Prospective Controlled Trial:
Ten million Americans enter jails annually. The objective was to evaluate new CDC guidelines for routine opt-out HIV testing and examine the optimal time to implement routine opt-out HIV testing among newly incarcerated jail detainees. This prospective, controlled trial of routine opt-out HIV testing was conducted among 323 newly incarcerated female inmates in Connecticut's only women's jail. 323 sequential entrants to the women's jail over a five week period in August and September 2007 were assigned to be offered routine opt-out HIV testing at one of three points after incarceration: immediate (same day, n = 108), early (next day, n = 108), or delayed (7 days, n = 107). The primary outcome was the proportion of women in each group consenting to testing. Routine opt-out HIV testing was significantly highest (73%) among the early testing group compared to 55% for immediate and 50% for 7 days post-entry groups. Other factors significantly (p = 0.01) associated with being HIV tested were younger age and low likelihood of early release from jail based on bond value or type of charge for which women were arrested. In this correctional facility, routine opt-out HIV testing in a jail setting was feasible, with highest rates of testing if performed the day after incarceration. Lower testing rates were seen with immediate testing, where there is a high prevalence of inability or unwillingness to test, and with delayed testing, where attrition from jail increases with each passing day.
Population-Level Associations between Preschool Vulnerability and Grade-Four Basic Skills:
This is a predictive validity study examining the extent to which developmental vulnerability at kindergarten entry (as measured by the Early Development Instrument, EDI) is associated with children's basic skills in 4th grade (as measured by the Foundation Skills Assessment, FSA). Relative risk analysis was performed on a large database linking individual-level EDI ratings to the scores the same children obtained on a provincial assessment of academic skills (FSA - Foundation Skills Assessment) four years later. We found that early vulnerability in kindergarten is associated with the basic skills that underlie populations of children's academic achievement in reading, writing and math, indicating that the Early Development Instrument permits to predict achievement-related skills four years in advance. The EDI can be used to predict children's educational trends at the population level and can help select early prevention and intervention programs targeting pre-school populations at minimum cost.
- Log in to post comments