Rethinking Pandemics At Several Levels

Here's a question for you: Historical records show that another pandemic will occur, but no one knows when. How do we create a mind shift among world leaders and people in general to start planning for the next one now?

This question is being posed in connection with the series premiere of National Geographic's "Fighting Pandemics" (November 1 at 9 pm ET on National Geographic Channel). The question is about pandemics, but the inspiration for the series, and the question, is the recent ebola pandemic in West Africa. I have a few thoughts, and I've been thinking about Ebola for a long time.

My first two encounters with Ebola might not have been encounters with Ebola, but might have been.

I was doing archaeology in a remote part of the Congo, not far from some of the earlier known outbreaks, in a region where later outbreaks occurred as well. In researching abandoned villages, one of which I partially excavated, I found out that there were settlements that had been struck with a terrible disease that killed many of the residents and made many others very ill. These events, of the previous decade or two, were so tragic and traumatic that those village sites were abandoned, and everyone I talked to claimed that they would never use those village sites again, even though re-occupation of villages previously abandoned as part of the swidden agricultural system was common. Ebola? Maybe.

Around the same time I was reading through a 1950s vintage travel guide to Uganda and the Belgian Congo, owned by my then father-in-law, Neil Tappen. Neil and his wife, Ardith, had worked there in the early 1960s, where Neil produced the first comprehensive survey of the rich primate fauna. They had acquired the book used, so they could not explain the marginal notes added by a previous owner, tallying the death rates of some group or another, with a mortality rate of about 60%. Ebola? Maybe.

If I had told those stories to an Ebola expert five years ago, I’d probably be told this was unlikely to have been that particular disease because it wasn’t around then. Now, we might be thinking Ebola has a longer history in the region. That is one of the many ways in which Ebola is being re-conceived in light of both the experience of the Ebola pandemic, and research spurred by that horrible chapter in West African history.

This and other events were enough to spark a long term interest in Ebola, and years ago I was able to contribute a couple of ideas to help in the hunt for a natural non-human reservoir. That was when fruit bats were first being given a hard look, and today, they are still suspect.

So what about the question at hand?

The first thing that comes to my mind is how do we put in place the resources needed to come immediately up to speed when a new pandemic seems to be starting. This would include monitoring in order to get on top of the problem as quickly as possible, infrastructure to transport good and people where they need to be, trained personnel to take on the various on the ground roles needed to isolate and treat patients and stop the spread of the disease.

However, these things are both obvious and outside my area of expertise. I’m pretty sure there are people at the UN’s WHO, the CDC, and other major health related organizations, thinking about these things.

But there is another aspect of preparation that I think is important. This is the way in which we misconceive Ebola or other diseases, because of a combination of incorrect thinking (about diseases), lack of information, and lack of experience. These misconceptions are usually found among the general public, and result from simply not knowing the science. But sometimes they arise among the medical researchers themselves, and result from not having enough research done, and not having enough experience with a disease.

For example, during the Ebola pandemic, many people were on the edge of panic because they somehow *knew* that it was only a matter of time before Ebola became fully airborne, like horrid diseases seem to do rather quickly in their fictional form, in novels, in movies, or on TV. In fact, Ebola is highly unlikely to become easily transmitted by air for reasons I go in to here.

That is an example of uninformed but concerned non-experts getting it wrong. But, the “airborne” nature of of Ebola, or lack thereof, is actually less than perfectly understood by many in the health business. For example, we often think of Influenza as an airborne disease because it can be spread by coughing and sneezing. However, this common disease is probably almost never spread that way. Rather, it is spread by physical contact, with bodily fluids (which may have been coughed or sneezed at the start) from the nose or mouth going to the hand, then to another person’s hand, then to the recipient’s nose or mouth, possibly with some intervening step such as an object handled by the patient. So, while many may be concerned that Ebola could turn into something like the flu, if it did that, it still would not be especially airborne. If you want to look at an airborne disease, check out measles, which can apparently travel down the hall from one patient examining room to another, through the air, resulting in a new infection.

It turns out that the categorization of modes of spread has been revised now and then and some feel that further revision would be appropriate, or at least, that everyone should be using a more nuanced and detailed method of describing how diseases can spread. A disease can spread through the air, in a sense, but not be truly airborne. But the distinction is critically important in dealing with a pandemic situation, or even a minor outbreak.

Dr. Ian Crozier From the New York Times (May 7, 2015):
When Dr. Ian Crozier was released from Emory University Hospital in October after a long, brutal fight with Ebola that nearly ended his life, his medical team thought he was cured. But less than two months later, he was back at the hospital with fading sight, intense pain and soaring pressure in his left eye.
Test results were chilling: The inside of Dr. Crozier’s eye was teeming with Ebola.

The accepted belief at the start of the Ebola pandemic was that Ebola would not persist in a survivor beyond a certain number of days, so post-infection quarantine periods needed to be just so long. Even then, however, it was known that Ebola could persist in the sperm of infected males for a much longer period. This should have been a clue. By the end of the pandemic, it was understood that Ebola could actually persist in an infected individual for a much longer time. Long enough, perhaps, to attribute an outbreak to a person who had harbored the disease rather than a novel infection from its wild reservoir. This is a significant finding that not only changes how we address quarantine, but also, how we ask questions about the wild reservoir.

A third area in which individuals making wrong assumptions can negatively impact an effort to address a new pandemic is in the locally variable beliefs about where infections come from, along side various mortuary practices that may be important to someone’s religion or belief system, but that enhance spread of the disease. I can not honestly characterize this set of local beliefs because, as an anthropologist who has worked in the Ebola region, I can tell you that belief systems are extremely variable there, with many different systems overlapping in space, within individual villages, and that even within the context of households or families, there is a great deal of individual variation.

I have known families where five or six people living together had three or four entirely different sets of beliefs about important (and unimportant) things. You know this too. Does everyone at a major family gathering, or a get together at work or in your community, share all their basic beliefs? That is highly unlikely. Yet we tend to see people living in other lands, more often than not in developing regions, as being far more homogeneous than they really are. Then, when someone points out a belief system interfering with a scientifically based endeavor (such as a major public health disaster), the assumption is that this is a widespread, intractable, universal problem. There is, though, more diversity than that around your Thanksgiving table and in a typical West or Central African village.

Sometimes these diverse beliefs emerge simply because different “tribal” groups all live near each other and traditional beliefs get thrown together when people, and this is very common, marry across those relatively artificial boundaries. But the most dramatic divergences in beliefs have to do with local reaction to systems, technologies, and practices, that come from the outside. This can be something simple like the best way to restore life to a nearly dead battery you were hoping to use in a radio, something more important like the best way to catch fish or wild game given the availability of key western goods like fishhooks and wire, to somewhat more bizarre arguments (in more remote areas) about what really is in those cans of foodstuffs that sometimes trickle in from Western sources.

When a “traditional” population sticks firmly to their beliefs even though it harms them, that’s a story and it may get reported in the New York Times. We saw reports like that during the Ebola pandemic, reports about people refusing to go to clinics because they believed something about Ebola that simply wasn’t true. But, it is also possible for people to put aside their traditional beliefs and accept new knowledge, and change their minds. In my experience, this is the much more common result of interaction between traditional indigenous thinking and intrusive Western thinking. But those stories, where people learn new stuff, change their minds, and change their practices, usually don’t make news. So, our Western conception of the West African peoples who were afflicted with this pandemic is that a huge problem arises from folks sticking to their old and incorrect folklore. Maybe that is true at times, but I strongly suspect that this aspect of the problem was way overplayed by the press.

So, here is what we have to do, aside from all that logistical planning (and fund raising) noted above.

More research. After many smaller outbreaks of Ebola over many years, the scientific and medical community was left with a number of important misconceptions about Ebola that might have been better known had there been more prior research. This must be assumed to be true of any disease that has pandemic potential but that has not developed to such a level so far. There needs to be a well funded, ongoing, international research program addressing emerging diseases that is proactive, addresses whatever research questions come along in good scientific tradition, as pure research rather than as a reaction to untoward events.

More education of the general public. Part of the problem in addressing a pandemic is the inappropriate response, often time and resource wasting, of the press and the public. This happens because the basic, and often rather simple, science needs to be taught fresh to reporters and those who consume the news each time something like this happens. After a decade and a half of major news agencies removing science bureaus, and the spread of anti-science sentiment largely for political reasons, we are paying a cost. If you watched any of the CDD or state health department press conferences at the time Ebola cases were popping up in the US, you will remember the difficulty officials and medical experts had in explaining the science to the reporters, and the often breathless and, frankly, foolish way many reporters were acting at those events. Those events were hardly remarked upon at the time, but the need to explain basic stuff to the reporters, and their poor level of preparation to understand these things, was shameful. But it is also fixable.

More education on the ground in areas that may be affected. Pandemics of this type may be thought of as more likely to emerge in tropical areas, but in fact, they can emerge elsewhere as well. Part of public health education should be to address proper public, community, family, and personal response to an infectious disease crisis, balancing between urgency and sensibility, to avoid undue panic or inappropriate responses when something does happen.

It is especially important that populations in regions that may be affected by pandemics can prepare by laying a groundwork of education and new new thinking about what these diseases are and how to spot them and cope with them.

Finally, Ebola is not the only pandemic causing horrid disease in the tropics, so the question at hand needs to be addressed generally. Moist equatorial Africa is not the only region where this sort of pandemic can develop. And, with climate change, the warmer regions of the world, where certain kinds of diseases seem to do better, are getting larger.

Categories

More like this

LATEST UPDATE HERE It is true that this particular outbreak of Ebola has taken health officials somewhat by surprise. It is impossible to know, but I suspect that if you had asked a few ebola experts, a year ago, if there could be an epidemic that would spread across three or four countries,…
UPDATE: They killed the dog. UPDATE: I'm adding this here because it is my current post on Ebola. Thomas Eric Duncan, the person who became symptomatic with Ebola in Dallas, had died at the Texas Health Presbyterian Hospital (according to news alerts). A nurse's assistant in Spain caring for…
Ebola has surfaced again. After a hiatus of over a year without any new identified outbreaks, the virus has reemerged in western Africa, in the first-ever multi-country outbreak of the Zaire strain of Ebola. As of this writing, there have been 122 suspected cases of the disease in Guinea (24…
This discussion has been going on for some time, and a handful of recent events have prompted me to jump into it (beyond a simple comment or two). First, I saw a bunch of yammering among various biology teachers about this topic. Then Michael Osterholm wrote a well intentioned but seemingly deeply…

Thanks for the article. I suspect that a pandemic is in our immediate future, but that it will probably be some more familiar disease that has become resistant to the usual antibiotics. It will kill a lot more people than usual, but there won't be bodies piling up in the streets.

Good post!

Can you tell us what pandemics are arising in peri-equatorial Central and South America, South Asia, Southeast Asia, and Australia?

Mark

By Mark Schooley MD (not verified) on 26 Oct 2015 #permalink