As usual on Tuesday nights, lots of cool stuff got published on PLoS ONE today. Here are some of my picks, but you should check all 30 of them (so, this week I am correct - there are now 1000+ articles on PLoS ONE):
Studying the genetic diversity of domesticated animals can provide insights into their domestication, and even the history of human migration. In this paper Pompanon and colleagues study mitochondrial DNA diversity of the domestic goat from 2430 animals from widespread Old World geographic origins. The researchers find a very high degree of mitochondrial diversity amongst goats, but suggest that even with such a large dataset, little can be concluded about the origin of goat domestication.
The Environmental Dependence of Inbreeding Depression in a Wild Bird Population:
Evolutionary genetic theory suggests that if related individuals breed, their offspring are likely to be less "fit" (or evolutionarily successful) than outbred offspring, because of the increased chance of inheriting two copies of a harmful recessive gene. The authors of this paper analysed the interaction between environment and inbreeding on individual fitness in a population of great tits. Their results suggest that in wild populations, the interaction between inbreeding and environment on fitness may be considerable.
The origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion, communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been identified in a range of sponges (phylum Porifera), their roles in development have not been investigated and remain largely unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-β signalling ligands during the embryonic development of a sponge.
Using resources generated in the recent sponge Amphimedon queenslandica (Demospongiae) genome project, we have recovered genes encoding Wnt and TGF-β signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until the swimming larva stage. In contrast, TGF-β expression is highest at the anterior pole. As in complex animals, sponge Wnt and TGF-β expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-β are expressed radially along the anterior-posterior axis.
We infer from the expression of Wnt and TGF-β in Amphimedon that the ancestor that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-β along the anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways contributed to establishing axial polarity in the very first metazoans.
Maladaptation and the Paradox of Robustness in Evolution:
Organisms use a variety of mechanisms to protect themselves against perturbations. For example, repair mechanisms fix damage, feedback loops keep homeostatic systems at their setpoints, and biochemical filters distinguish signal from noise. Such buffering mechanisms are often discussed in terms of robustness, which may be measured by reduced sensitivity of performance to perturbations.
I use a mathematical model to analyze the evolutionary dynamics of robustness in order to understand aspects of organismal design by natural selection. I focus on two characters: one character performs an adaptive task; the other character buffers the performance of the first character against perturbations. Increased perturbations favor enhanced buffering and robustness, which in turn decreases sensitivity and reduces the intensity of natural selection on the adaptive character. Reduced selective pressure on the adaptive character often leads to a less costly, lower performance trait.
The paradox of robustness arises from evolutionary dynamics: enhanced robustness causes an evolutionary reduction in the adaptive performance of the target character, leading to a degree of maladaptation compared to what could be achieved by natural selection in the absence of robustness mechanisms. Over evolutionary time, buffering traits may become layered on top of each other, while the underlying adaptive traits become replaced by cheaper, lower performance components. The paradox of robustness has widespread implications for understanding organismal design.
Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale.
This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)-quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)-frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)-duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)-emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)-inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems.
Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new "hominiform" clade and suggests a homeotic origin for the human upright body plan.
Nullomers: Really a Matter of Natural Selection?:
Nullomers are short DNA sequences that are absent from the genomes of humans and other species. Assuming that nullomers are the signatures of natural selection against deleterious sequences in humans, the use of nullomers in drug target identification, pesticide development, environmental monitoring, and forensic applications has been envisioned.
Here, we show that the hypermutability of CpG dinucleotides, rather than the natural selection against the nullomer sequences, is likely the reason for the phenomenal event of short sequence motifs becoming nullomers. Furthermore, many reported human nullomers differ by only one nucleotide, which reinforces the role of mutation in the evolution of the constellation of nullomers in populations and species. The known nullomers in chimpanzee, cow, dog, and mouse genomes show patterns that are consistent with those seen in humans.
The role of mutations, instead of selection, in generating nullomers cast doubt on the utility of nullomers in many envisioned applications, because of their dependence on the role of lethal selection on the origin of nullomers.
Demographic Histories of ERV-K in Humans, Chimpanzees and Rhesus Monkeys:
We detected 19 complete endogenous retroviruses of the K family in the genome of rhesus monkey (Macaca mulatta; RhERV-K) and 12 full length elements in the genome of the common chimpanzee (Pan troglodytes; CERV-K). These sequences were compared with 55 human HERV-K and 20 CERV-K reported previously, producing a total data set of 106 full-length ERV-K genomes. Overall, 61% of the human elements compared to 21% of the chimpanzee and 47% of rhesus elements had estimated integration times less than 4.5 million years before present (MYBP), with an average integration times of 7.8 MYBP, 13.4 MYBP and 10.3 MYBP for HERV-K, CERV-K and RhERV-K, respectively. By excluding those ERV-K sequences generated by chromosomal duplication, we used 63 of the 106 elements to compare the population dynamics of ERV-K among species. This analysis indicated that both HERV-K and RhERV-K had similar demographic histories, including markedly smaller effective population sizes, compared to CERV-K. We propose that these differing ERV-K dynamics reflect underlying differences in the evolutionary ecology of the host species, such that host ecology and demography represent important determinants of ERV-K dynamics.
Prostate carcinomas are initially dependent on androgens, and castration or androgen antagonists inhibit their growth. After some time though, tumors become resistant and recur with a poor prognosis. The majority of resistant tumors still expresses a functional androgen receptor (AR), frequently amplified or mutated.
To test the hypothesis that AR is not only expressed, but is still a key therapeutic target in advanced carcinomas, we injected siRNA targeting AR into mice bearing exponentially growing castration-resistant tumors. Quantification of siRNA into tumors and mouse tissues demonstrated their efficient uptake. This uptake silenced AR in the prostate, testes and tumors. AR silencing in tumors strongly inhibited their growth, and importantly, also markedly repressed the VEGF production and angiogenesis.
Our results demonstrate that carcinomas resistant to hormonal manipulations still depend on the expression of the androgen receptor for their development in vivo. The siRNA-directed silencing of AR, which allows targeting overexpressed as well as mutated isoforms, triggers a strong antitumoral and antiangiogenic effect. siRNA-directed silencing of this key gene in advanced and resistant prostate tumors opens promising new therapeutic perspectives and tools.
Implementing Routine HIV Testing: The Role of State Law:
In September 2006, the Centers for Disease Control and Prevention (CDC) recommended routine HIV testing for all Americans aged 13-64, which would eliminate requirements for written consent and pretest counseling as previously required. However, this approach may conflict with state requirements concerning pretest counseling and informed consent for HIV testing. Our survey of state HIV testing laws demonstrates that the majority of states have HIV testing requirements that are inconsistent with the CDC's recommendations. Moreover, states that have recently amended their laws have not eased the requirements for pretest counseling and informed consent. The reasons for the persistence of these legal requirements must be understood to effect policy changes to increase HIV testing.
The significance of behavioral neuroscience and the validity of its animal models of human pathology largely depend on the possibility to replicate a given finding across different laboratories. Under the present test and housing conditions, this axiom fails to resist the challenge of experimental validation. When several mouse strains are tested on highly standardized behavioral test batteries in different laboratories, significant strainÃlab interactions are often detected. This limitation, predominantly due to elevated within-group variability observed in control subjects, increases the number of animals needed to address fine experimental questions. Laboratory rodents display abnormal stress and fear reactions to experimental testing, which might depend on the discrepancy between the stability of the neonatal environment and the challenging nature of the adult test and housing conditions.
Stimulating neonatal environments (e.g. brief maternal separations, increased foraging demands or maternal corticosterone supplementation) reduce stress and fear responses in adulthood. Here we tested whether reduced fearfulness associated with experimental testing would also reduce inter-individual variation. In line with our predictions, we show that a moderate elevation in neonatal corticosterone through maternal milk significantly reduces fear responses and inter-individual variability (average 44%) in adult mouse offspring.
We observed reduced variation in pain perception, novelty preference, hormonal stress response and resistance to pathogen infection. This suggests that the results of this study may apply to a relatively broad spectrum of neuro-behavioral domains. Present findings encourage a reconsideration of the basic principles of neonatal housing systems to improve the validity of experimental models and reduce the number of animals used.
Adaptive Evolution of a Stress Response Protein:
Some cancers are mediated by an interplay between tissue damage, pathogens and localised innate immune responses, but the mechanisms that underlie these linkages are only beginning to be unravelled.
Here we identify a strong signature of adaptive evolution on the DNA sequence of the mammalian stress response gene SEP53, a member of the epidermal differentiation complex fused-gene family known for its role in suppressing cancers. The SEP53 gene appears to have been subject to adaptive evolution of a type that is commonly (though not exclusively) associated with coevolutionary arms races. A similar pattern of molecular evolution was not evident in the p53 cancer-suppressing gene.
Our data thus raises the possibility that SEP53 is a component of the mucosal/epithelial innate immune response engaged in an ongoing interaction with a pathogen. Although the pathogenic stress mediating adaptive evolution of SEP53 is not known, there are a number of well-known candidates, in particular viruses with established links to carcinoma.
Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis:
Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This 'landscape-divergence hypothesis', if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems.
As always, look around, read the articles, rate them, post comments and annotations, send trackbacks if you blog about them, and if you want to do a Journal Club on one of them, let me know.
- Log in to post comments
siRNA to gum up androgen receptors, interesting. will pass that link to greensmile jr. at CU boulder. He is working on RNA mechanisms in expression there.
Boy, we are definitely drinking from the fire hose here.