New and Exciting in PLoS this week

Friday - the day to take a look at all seven PLoS journals and make my own personal picks. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Taking the Lag out of Jet Lag through Model-Based Schedule Design:

Traveling across several times zones can cause an individual to experience "jet lag," which includes trouble sleeping at night and trouble remaining awake during the day. A major cause of these effects is the desynchronization between the body's internal circadian clock and local environmental cues. A well-known intervention to resynchronize an individual's clock with the environment is appropriately timed light exposure. Used as an intervention, properly timed light stimuli can reset an individual's internal circadian clock to align with local time, resulting in more efficient sleep, a decrease in fatigue, and an increase in cognitive performance. The contrary is also true: poorly timed light exposure can prolong the resynchronization process. In this paper, we present a computational method for automatically determining the proper placement of these interventional light stimuli. We used this method to simulate shifting sleep-wake schedules (as seen in jet lag situations) and design interventions. Essential to our approach is the use of mathematical models that simulate the body's internal circadian clock and its effect on human performance. Our results include quicker design of multiple schedule alternatives and predictions of substantial performance improvements relative to no intervention. Therefore, our methods allow us to use these models not only to assess schedules but also to interactively design schedules that will result in improved performance.

Allometry of the Duration of Flight Feather Molt in Birds:

The pace of life varies with body size and is generally slower among larger organisms. Larger size creates opportunities but also establishes constraints on time-dependent processes. Flying birds depend on large wing feathers that deteriorate over time and must be replaced through molting. The lengths of flight feathers increase as the 1/3 power of body mass, as one expects for a length-to-volume ratio. However, feather growth rate increases as only the 1/6 power of body mass, possibly because a two-dimensional feather is produced by a one-dimensional growing region. The longer time required to grow a longer feather constrains the way in which birds molt, because partially grown feathers reduce flight efficiency. Small birds quickly replace their flight feathers, often growing several feathers at a time in each wing. Larger species either prolong molt over two or more years, adopt complex patterns of multiple feather replacement to minimize gaps in the flight surface, or, among species that do not rely on flight for feeding, simultaneously molt all their flight feathers. We speculate that the extinct 70-kg raptor, Argentavis magnificens, must have undergone such a simultaneous molt, living off fat reserves for the duration.

Will the Public's Health Fall Victim to the Home Foreclosure Epidemic?:

While policy makers worldwide have scrambled to counter its economic effects, the potential health implications of home foreclosure have received little empirical attention. Home foreclosure can be viewed as a stressful life event of prolonged duration, with multiple phases of variable intensity. Although no studies to date have reported the specific health effects of home foreclosure, we posit that foreclosure may be associated with a range of psychological and health behavior outcomes that, in turn, might increase chronic disease risk. Susceptibility to home foreclosure might involve both compositional and contextual dimensions. Delinquency management policies designed to prevent foreclosures from occurring are arguably best suited to protect the health of those at greatest risk.

Cardiac Arrest during Gamete Release in Chum Salmon Regulated by the Parasympathetic Nerve System:

Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG) data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta) at the moment of gamete release for 7.39±1.61 s in females and for 5.20±0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a β-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

Shared Visual Attention and Memory Systems in the Drosophila Brain:

Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM) mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity required for attention-like processes in the fly brain.

Categories

More like this

There are 17 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with…
If you really read this blog 'for the articles', you know some of my recurrent themes, e.g., that almost every biological function exhibits cycles and that almost every cell in every organism contains a more-or-less functioning clock. Here is a new paper that combines both of those themes very…
If you really read this blog 'for the articles', you know some of my recurrent themes, e.g., that almost every biological function exhibits cycles and that almost every cell in every organism contains a more-or-less functioning clock. Here is a new paper that combines both of those themes very…
If you really read this blog 'for the articles', you know some of my recurrent themes, e.g., that almost every biological function exhibits cycles and that almost every cell in every organism contains a more-or-less functioning clock. Here is a new paper that combines both of those themes very…