New and Exciting in PLoS this week

Lots of interesting papers got published in various PLoS titles this week. These are my choices - papers I find personally most interesting (as well as most bloggable). As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Is It Easy to Be Urban? Convergent Success in Urban Habitats among Lineages of a Widespread Native Ant:

The most rapidly expanding habitat globally is the urban habitat, yet the origin and life histories of the populations of native species that inhabit this habitat remain poorly understood. We use DNA barcoding of the COI gene in the widespread native pest ant Tapinoma sessile to test two hypotheses regarding the origin of urban populations and traits associated with their success. First, we determine if urban samples of T. sessile have a single origin from natural populations by looking at patterns of haplotype clustering from across their range. Second, we examine whether polygynous colony structure - a trait associated with invasion success - is correlated with urban environments, by studying the lineage dependence of colony structure. Our phylogenetic analysis of 49 samples identified four well supported geographic clades. Within clades, Kimura-2 parameter pairwise genetic distances revealed

Phenotypic Variance Predicts Symbiont Population Densities in Corals: A Modeling Approach:

We test whether the phenotypic variance of symbionts (Symbiodinium) in corals is closely related with the capacity of corals to acclimatize to increasing seawater temperatures. Moreover, we assess whether more specialist symbionts will increase within coral hosts under ocean warming. The present study is only applicable to those corals that naturally have the capacity to support more than one type of Symbiodinium within the lifetime of a colony; for example, Montastraea annularis and Montastraea faveolata. The population dynamics of competing Symbiodinium symbiont populations were projected through time in coral hosts using a novel, discrete time optimal-resource model. Models were run for two Atlantic Ocean localities. Four symbiont populations, with different environmental optima and phenotypic variances, were modeled to grow, divide, and compete in the corals under seasonal fluctuations in solar insolation and seawater temperature. Elevated seawater temperatures were input into the model 1.5°C above the seasonal summer average, and the symbiont population response was observed for each location. The models showed dynamic fluctuations in Symbiodinium populations densities within corals. Population density predictions for Lee Stocking Island, the Bahamas, where temperatures were relatively homogenous throughout the year, showed a dominance of both type 2, with high phenotypic variance, and type 1, a high-temperature and high-insolation specialist. Whereas the densities of Symbiodinium types 3 and 4, a high-temperature, low-insolation specialist, and a high-temperature, low-insolation generalist, remained consistently low. Predictions for Key Largo, Florida, where environmental conditions were more seasonally variable, showed the coexistence of generalists (types 2 and 4) and low densities of specialists (types 1 and 3). When elevated temperatures were input into the model, population densities in corals at Lee Stocking Island showed an emergence of high-temperature specialists. However, even under high temperatures, corals in the Florida Keys were dominated by generalists. Predictions at higher seawater temperatures showed endogenous shuffling and an emergence of the high-temperature Symbiodinium specialists, even though their phenotypic variance was low. The model shows that sustaining these "hidden" specialists becomes advantageous under thermal stress conditions, and shuffling symbionts may increase the corals' capacity to acclimatize but not adapt to climatechange-induced ocean warming.

Adaptable Functionality of Transcriptional Feedback in Bacterial Two-Component Systems:

Bacteria have evolved various mechanisms for surviving unpredictable changes and stresses in the environment, such as nutrient limitation. One common survival mechanism is the two-component system, where a sensor protein responds to a particular type of stress by activating a regulator in the cell. These regulators can in turn activate genes that produce proteins for stress-appropriate responses. The activated regulator often positively regulates transcription of its own operon containing the sensor and regulator genes leading to a feedback loop. This is interesting, because positive feedback is usually associated with a slower response time than negative feedback and therefore negative feedback would often be selected for by evolution. Here we analyze a mathematical model to study the interplay of this feedback and postranslational mechanisms regulating two-component system signaling. We found that modulation of regulator activity by its operon partner can lead to overall negative feedback to result from autoactivation. This happens if (1) the sensor can both activate and deactivate the regulator, and (2) there is some reaction resulting in regulator activation independently of its cognate sensor. As a result our model predicts that two-component systems may be capable of flexibly switching between positive and negative feedback depending on different circumstances, allowing for appropriate responses in a variety of conditions.

Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes:

The natural transfer of DNA from mitochondria to the nucleus generates nuclear copies of mitochondrial DNA (numts) and is an ongoing evolutionary process, as genome sequences attest. In humans, five different numts cause genetic disease and a dozen human loci are polymorphic for the presence of numts, underscoring the rapid rate at which mitochondrial sequences reach the nucleus over evolutionary time. In the laboratory and in nature, numts enter the nuclear DNA via non-homolgous end joining (NHEJ) at double-strand breaks (DSBs). The frequency of numt insertions among 85 sequenced eukaryotic genomes reveal that numt content is strongly correlated with genome size, suggesting that the numt insertion rate might be limited by DSB frequency. Polymorphic numts in humans link maternally inherited mitochondrial genotypes to nuclear DNA haplotypes during the past, offering new opportunities to associate nuclear markers with mitochondrial markers back in time.

Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus:

Centromeres are the functional elements controlling chromosome segregation during cell division. Vertebrate centromeres, which typically contain large amounts of tandem repeats (satellite DNA), are highly conserved for function but not for DNA sequence, suggesting that centromeric function is mainly determined by epigenetic factors. Evolutionary centromere repositioning is the shift of a centromere to a new position in the absence of structural chromosome rearrangements. In previous work, we demonstrated that centromere repositioning was exceptionally frequent during the evolution of the genus Equus (horses, asses, and zebras). In the present paper, we show that several Equus centromeres, including all the previously described evolutionary new centromeres, are apparently satellite-free, supporting the idea that large blocks of repeats are not necessarily required for the stability of centromeres. Our results suggest that centromere repositioning might be a two-step event: first, a neocentromere arises in a satellite-less region; satellite repeats may then colonize this repositioned centromere at a later stage, giving rise to a "mature" centromere. The rapidly evolving Equus species gave us the opportunity to catch snapshots of several evolutionary novel centromeres in different stages during their maturation.

The Scale of Population Structure in Arabidopsis thaliana:

Much of the modern field of population genetics is premised on particular models of what an organism's population structure is and how it behaves. The classic models generally start with the idea of a single randomly mating population that has reached an evolutionary equilibrium. Many models relax some of these assumptions, allowing for phenomena such as assortative mating, discrete sub-populations with migration, self-fertilization, and sex-ratio distortion. Virtually all models, however, have as their core premise the notion that there exist classes of exchangeable individuals each of which represents an identical, independent sample from that class' distribution. For certain organisms, such as Drosophila melanogaster, these models do an excellent job of describing how populations work. For other organisms, such as humans, these models can be reasonable approximations but require a great deal of care in assembling samples and can begin to break down as sampling becomes locally dense. For the vast majority of organisms the applicability of these models has never been investigated.

A Novel Pseudopodial Component of the Dendritic Cell Anti-Fungal Response: The Fungipod:

Yeasts are normal microbial commensals of humans and a significant source of opportunistic infections, especially in immunocompromised individuals. We report a novel cellular protrusive structure, the fungipod, which participates in the host-microbe interaction between human immature dendritic cells (DC) and yeasts. The fungipod's structure is based on and propelled by a robust process of local actin cytoskeleton growth at the DC-yeast contact site, and this cytoskeletal remodeling results in a durable tubular structure over 10 µm long connecting the dorsal DC membrane and yeast. The fungal cell wall polysaccharides mannan and chitin trigger fungipod formation by stimulating the carbohydrate pattern recognition receptor CD206. Fungipods are part of a specific response to large particulate objects (i.e., yeast), and they may promote the human immature DC's relatively poor phagocytosis of yeast. The human fungal pathogen, Candida parapsilosis, induces a strong fungipod response from DC, and this response is highly species specific since the related pathogens Candida albicans and Candida tropicalis induce fungipods rarely. Our work highlights a novel cell biological element of fungal recognition by the innate immune system.

On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos:

Chimpanzees and gorillas are known to have malaria parasites (genus Plasmodium) similar to those that infect humans. It is likely that detailed molecular studies of these parasites will help understand important aspects of the malaria disease and of immune defences in humans, and could then guide the development of novel control measures. However, few studies of parasites in African Apes have been conducted to date. Here we present the results of a survey of malaria parasites in chimpanzees and bonobos, our closest relatives. In chimpanzees, we identified two new parasite species closely related to P. falciparum, the most dangerous of the parasites in humans. We also found that bonobos harbour malaria parasites including P. falciparum. Phylogenetic analyses of these parasites strongly suggested that P. falciparum evolved in bonobos, and that it was introduced into humans from bonobos at a later date. Overall, our findings have substantially altered our perception of the origin of malaria parasites in humans.

Specific Strains of Escherichia coli Are Pathogenic for the Endometrium of Cattle and Cause Pelvic Inflammatory Disease in Cattle and Mice:

Escherichia coli are widespread in the environment and pathogenic strains cause diseases of mucosal surfaces including the female genital tract. Pelvic inflammatory disease (PID; metritis) or endometritis affects ~40% of cattle after parturition. We tested the expectation that multiple genetically diverse E. coli from the environment opportunistically contaminate the uterine lumen after parturition to establish PID. Distinct clonal groups of E. coli were identified by Random Amplification of Polymorphic DNA (RAPD) and Multilocus sequence typing (MLST) from animals with uterine disease and these differed from known diarrhoeic or extra-intestinal pathogenic E. coli. The endometrial pathogenic E. coli (EnPEC) were more adherent and invasive for endometrial epithelial and stromal cells, compared with E. coli isolated from the uterus of clinically unaffected animals. The endometrial epithelial and stromal cells produced more prostaglandin E2 and interleukin-8 in response to lipopolysaccharide (LPS) purified from EnPEC compared with non-pathogenic E. coli. The EnPEC or their LPS also caused PID when infused into the uterus of mice with accumulation of neutrophils and macrophages in the endometrium. Infusion of EnPEC was only associated with bacterial invasion of the endometrium and myometrium. Despite their ability to invade cultured cells, elicit host cell responses and establish PID, EnPEC lacked sixteen genes commonly associated with adhesion and invasion by enteric or extraintestinal pathogenic E. coli, though the ferric yersiniabactin uptake gene (fyuA) was present in PID-associated EnPEC. Endometrial epithelial or stromal cells from wild type but not Toll-like receptor 4 (TLR4) null mice secreted prostaglandin E2 and chemokine (C-X-C motif) ligand 1 (CXCL1) in response to LPS from EnPEC, highlighting the key role of LPS in PID. The implication arising from the discovery of EnPEC is that development of treatments or vaccines for PID should focus specifically on EnPEC and not other strains of E. coli.

Design of a Trichromatic Cone Array:

Human color perception arises by comparing the signals from cones with peak sensitivities, at long (L), medium (M) and short (S) wavelengths. In dichromats, a characteristic distribution of S and M cones supports blue-yellow color vision: a few S and mostly M. When L cones are added, allowing red-green color vision, the S proportion remains low, increasing slowly with increasing retinal eccentricity, but the L/M proportion can vary 5-fold without affecting red-green color perception. We offer a unified explanation of these striking facts. First, we find that the spatial-chromatic statistics of natural scenes are largely symmetric between the L, M and S sensitivity bands. Thus, attenuation of blue light in the optical media, and chromatic aberration after long-wavelength accommodation of the lens, can give L/M cones an advantage. Quantitatively, information transmission by the cone array is maximized when the S proportion is low but increasing slowly with retinal eccentricity, accompanied by a lens accommodated to red light. After including blur by the lens, the optimum depends weakly on the red/green ratio, allowing large variations without loss of function. This explains the basic layout of the cone mosaic: for the resources invested, the organization maximizes information.

Evolution and Ecophysiology of the Industrial Producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a New Sympatric Agamospecies Related to It:

Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage) of the common pantropical ascomycete Hypocrea jecorina. We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster) barcode in fact comprise several species: i) H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages) found on dead wood and the wild-type strain of T. reesei QM 6a; ii) T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii) and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour - T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation within saprotrophic fungi, with divergent ecophysiological adaptations and reproductive strategies.

Responses to Environmental Enrichment Differ with Sex and Genotype in a Transgenic Mouse Model of Huntington's Disease:

Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2 mouse model of Huntington's disease (HD), where increased social interaction, sensory stimulation, exploration, and physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian rhythms, treatment of which may improve cognition, general health, and survival. We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2 mice. Our mice are typically housed in an "enriched" environment, so the EE that the mice received was in addition to these enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box containing running wheels and other toys). The "home cage" and "playground" groups were subdivided into "handling" (stimulated throughout the experimental period) and "no-handling" groups. All mice were assessed for survival, body weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE combined with handling significantly improved MWM performance in female, but not male, R6/2 mice. We show that even when mice are living in an enriched home cage, further EE had beneficial effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals.

Categories

More like this

found a really GREAT paper for my journal club meeting. I'm leadignt he discussion next week for the 30yr running of the Animal Behavior Discussion Group at my university will get to read a rocking Open Access Article.

Thanks Bora!